IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v121y2011i10p2416-2454.html
   My bibliography  Save this article

Nonsynchronous covariation process and limit theorems

Author

Listed:
  • Hayashi, Takaki
  • Yoshida, Nakahiro

Abstract

An asymptotic distribution theory of the nonsynchronous covariation process for continuous semimartingales is presented. Two continuous semimartingales are sampled at stopping times in a nonsynchronous manner. Those sampling times possibly depend on the history of the stochastic processes and themselves. The nonsynchronous covariation process converges to the usual quadratic covariation of the semimartingales as the maximum size of the sampling intervals tends to zero. We deal with the case where the limiting variation process of the normalized approximation error is random and prove the convergence to mixed normality, or convergence to a conditional Gaussian martingale. A class of consistent estimators for the asymptotic variation process based on kernels is proposed, which will be useful for statistical applications to high-frequency data analysis in finance. As an illustrative example, a Poisson sampling scheme with random change point is discussed.

Suggested Citation

  • Hayashi, Takaki & Yoshida, Nakahiro, 2011. "Nonsynchronous covariation process and limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2416-2454, October.
  • Handle: RePEc:eee:spapps:v:121:y:2011:i:10:p:2416-2454
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414910002905
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takaki Hayashi & Nakahiro Yoshida, 2008. "Asymptotic normality of a covariance estimator for nonsynchronously observed diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 367-406, June.
    2. Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics," Econometrica, Econometric Society, vol. 72(3), pages 885-925, May.
    3. Yoshida, Nakahiro, 1992. "Estimation for diffusion processes from discrete observation," Journal of Multivariate Analysis, Elsevier, vol. 41(2), pages 220-242, May.
    4. Takaki Hayashi & Shigeo Kusuoka, 2008. "Consistent estimation of covariation under nonsynchronicity," Statistical Inference for Stochastic Processes, Springer, vol. 11(1), pages 93-106, February.
    5. Toshiya Hoshikawa & Keiji Nagai & Taro Kanatani & Yoshihiko Nishiyama, 2008. "Nonparametric Estimation Methods of Integrated Multivariate Volatilities," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 112-138.
    6. Masato Ubukata & Kosuke Oya, 2008. "A Test for Dependence and Covariance Estimator of Market Microstructure Noise," Discussion Papers in Economics and Business 07-03-Rev.2, Osaka University, Graduate School of Economics and Osaka School of International Public Policy (OSIPP).
    7. Per Aslak Mykland & Lan Zhang, 2006. "ANOVA for diffusions and It\^{o} processes," Papers math/0611274, arXiv.org.
    8. Maria Elvira Mancino & Paul Malliavin, 2002. "Fourier series method for measurement of multivariate volatilities," Finance and Stochastics, Springer, vol. 6(1), pages 49-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Potiron, Yoann & Mykland, Per A., 2017. "Estimation of integrated quadratic covariation with endogenous sampling times," Journal of Econometrics, Elsevier, vol. 197(1), pages 20-41.
    2. Zhi Liu, 2016. "Estimating integrated co-volatility with partially miss-ordered high frequency data," Statistical Inference for Stochastic Processes, Springer, vol. 19(2), pages 175-197, July.
    3. Markus Bibinger & Mathias Vetter, 2015. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 707-743, August.
    4. Koike, Yuta, 2014. "Limit theorems for the pre-averaged Hayashi–Yoshida estimator with random sampling," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2699-2753.
    5. Altmeyer, Randolf & Bibinger, Markus, 2015. "Functional stable limit theorems for quasi-efficient spectral covolatility estimators," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4556-4600.
    6. Takaki Hayashi & Yuta Koike, 2017. "Multi-scale analysis of lead-lag relationships in high-frequency financial markets," Papers 1708.03992, arXiv.org, revised Feb 2018.
    7. Djellout, Hacène & Samoura, Yacouba, 2014. "Large and moderate deviations of realized covolatility," Statistics & Probability Letters, Elsevier, vol. 86(C), pages 30-37.
    8. Markus Bibinger & Mathias Vetter, 2013. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," SFB 649 Discussion Papers SFB649DP2013-029, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    9. Markus Bibinger & Per A. Mykland, 2016. "Inference for Multi-dimensional High-frequency Data with an Application to Conditional Independence Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1078-1102, December.
    10. Yuta Koike, 2014. "An estimator for the cumulative co-volatility of asynchronously observed semimartingales with jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 460-481, June.
    11. Yuta Koike, 2017. "Time endogeneity and an optimal weight function in pre-averaging covariance estimation," Statistical Inference for Stochastic Processes, Springer, vol. 20(1), pages 15-56, April.
    12. Reiß, Markus & Todorov, Viktor & Tauchen, George, 2015. "Nonparametric test for a constant beta between Itô semi-martingales based on high-frequency data," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 2955-2988.
    13. repec:eee:econom:v:200:y:2017:i:1:p:36-47 is not listed on IDEAS
    14. Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2014. "Large Deviations Of The Realized (Co-)Volatility Vector," Working Papers hal-01082903, HAL.
    15. repec:eee:spapps:v:127:y:2017:i:9:p:2926-2960 is not listed on IDEAS
    16. Ogihara, Teppei & Yoshida, Nakahiro, 2014. "Quasi-likelihood analysis for nonsynchronously observed diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2954-3008.
    17. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.
    18. Markus Bibinger & Nikolaus Hautsch & Peter Malec & Markus Reiss, 2013. "Estimating the Quadratic Covariation Matrix from Noisy Observations: Local Method of Moments and Efficiency," SFB 649 Discussion Papers SFB649DP2013-017, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    19. Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2017. "Large Deviations Of The Realized (Co-)Volatility Vector," Post-Print hal-01082903, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:121:y:2011:i:10:p:2416-2454. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.