IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v27y2008i1-3p112-138.html
   My bibliography  Save this article

Nonparametric Estimation Methods of Integrated Multivariate Volatilities

Author

Listed:
  • Toshiya Hoshikawa
  • Keiji Nagai
  • Taro Kanatani
  • Yoshihiko Nishiyama

Abstract

Estimation of integrated multivariate volatilities of an Ito process is an interesting and important issue in finance, for example, in order to evaluate portfolios. New non-parametric estimators have been recently proposed by Malliavin and Mancino (2002) and Hayashi and Yoshida (2005a) as alternative methods to classical realized quadratic covariation. The purpose of this article is to compare these alternative estimators both theoretically and empirically, when high frequency data is available. We found that the Hayashi-Yoshida estimator performs the best among the alternatives in view of the bias and the MSE. The other estimators are shown to have possibly heavy bias mostly toward the origin. We also applied these estimators to Japanese Government Bond futures to obtain the results consistent with our simulation.

Suggested Citation

  • Toshiya Hoshikawa & Keiji Nagai & Taro Kanatani & Yoshihiko Nishiyama, 2008. "Nonparametric Estimation Methods of Integrated Multivariate Volatilities," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 112-138.
  • Handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:112-138 DOI: 10.1080/07474930701853855
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930701853855
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Pong, Shiuyan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2004. "Forecasting currency volatility: A comparison of implied volatilities and AR(FI)MA models," Journal of Banking & Finance, Elsevier, vol. 28(10), pages 2541-2563, October.
    3. Verhoeven, Peter & McAleer, Michael, 2004. "Fat tails and asymmetry in financial volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 351-361.
    4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, pages 701-720.
    5. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    6. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    7. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    8. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Sanfelici & M. E. Mancino, 2008. "Covariance estimation via Fourier method in the presence of asynchronous trading and microstructure noise," Economics Department Working Papers 2008-ME01, Department of Economics, Parma University (Italy).
    2. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, pages 10-45.
    3. Hayashi, Takaki & Yoshida, Nakahiro, 2011. "Nonsynchronous covariation process and limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2416-2454, October.
    4. Masato Ubukata & Kosuke Oya, 2007. "Test of Unbiasedness of the Integrated Covariance Estimation in the Presence of Noise," Discussion Papers in Economics and Business 07-03, Osaka University, Graduate School of Economics and Osaka School of International Public Policy (OSIPP).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:27:y:2008:i:1-3:p:112-138. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.