IDEAS home Printed from https://ideas.repec.org/p/osk/wpaper/0703r2.html
   My bibliography  Save this paper

A Test for Dependence and Covariance Estimator of Market Microstructure Noise

Author

Listed:
  • Masato Ubukata

    () (Graduate School of Economics, Osaka University)

  • Kosuke Oya

    () (Graduate School of Economics, Osaka University)

Abstract

There are many approaches for estimating an integrated variance and covariance in the presence of market microstructure noise. It is important to know a dependence of noise to construct the integrated variance and covariance estimators. We study a time dependence of bivariate noise processes in this paper. We propose a test statistic for the dependence of the noises and an autocovariance estimator of the noises and derive its asymptotic distribution. The asymptotic distribution of the autocovariance estimator provides us to another test statistic which is for significance of the autocovariances and for detection whether the noise exists or not. We obtain good performances of the test statistics and autocovariance estimator of the noises in a finite sample through Monte Carlo simulation. In empirical illustration, we confirm that the proposed statistics and estimators capture various dependence patterns of the market microstructure noises.

Suggested Citation

  • Masato Ubukata & Kosuke Oya, 2008. "A Test for Dependence and Covariance Estimator of Market Microstructure Noise," Discussion Papers in Economics and Business 07-03-Rev.2, Osaka University, Graduate School of Economics and Osaka School of International Public Policy (OSIPP).
  • Handle: RePEc:osk:wpaper:0703r2
    as

    Download full text from publisher

    File URL: http://www2.econ.osaka-u.ac.jp/library/global/dp/0703R2.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    2. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    3. Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011. "Ultra high frequency volatility estimation with dependent microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
    4. Politis, D. N. & Romano, Joseph P. & Wolf, Michael, 1997. "Subsampling for heteroskedastic time series," Journal of Econometrics, Elsevier, vol. 81(2), pages 281-317, December.
    5. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    6. Valeri Voev & Asger Lunde, 2007. "Integrated Covariance Estimation using High-frequency Data in the Presence of Noise," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 68-104.
    7. Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 525-554.
    8. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hayashi, Takaki & Yoshida, Nakahiro, 2011. "Nonsynchronous covariation process and limit theorems," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2416-2454, October.

    More about this item

    Keywords

    test statistic; market microstructure noise; time-dependence; nonsynchronous observations; high frequency data.;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • D49 - Microeconomics - - Market Structure, Pricing, and Design - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osk:wpaper:0703r2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Atsuko SUZUKI). General contact details of provider: http://edirc.repec.org/data/feosujp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.