IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v77y2025i3d10.1007_s10463-024-00917-6.html
   My bibliography  Save this article

Non-explicit formula of boundary crossing probabilities by the Girsanov theorem

Author

Listed:
  • Yoann Potiron

    (Keio University)

Abstract

This paper derives several formulae for the probability that a Wiener process, which has a stochastic drift and random variance, crosses a one-sided stochastic boundary within a finite time interval. A non-explicit formula is first obtained by the Girsanov theorem when considering an equivalent probability measure in which the boundary is constant and equal to its starting value. A more explicit formula is then achieved by decomposing the Radon–Nikodym derivative inverse. This decomposition expresses it as the product of a random variable, which is measurable with respect to the Wiener process’s final value, and an independent random variable. We also provide an explicit formula based on a strong theoretical assumption. To apply the Girsanov theorem, we assume that the difference between the drift increment and the boundary increment, divided by the standard deviation, is absolutely continuous. Additionally, we assume that its derivative satisfies Novikov’s condition.

Suggested Citation

  • Yoann Potiron, 2025. "Non-explicit formula of boundary crossing probabilities by the Girsanov theorem," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(3), pages 353-385, June.
  • Handle: RePEc:spr:aistmt:v:77:y:2025:i:3:d:10.1007_s10463-024-00917-6
    DOI: 10.1007/s10463-024-00917-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-024-00917-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-024-00917-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Potiron, Yoann & Mykland, Per A., 2017. "Estimation of integrated quadratic covariation with endogenous sampling times," Journal of Econometrics, Elsevier, vol. 197(1), pages 20-41.
    2. Jaap H. Abbring, 2012. "Mixed Hitting‐Time Models," Econometrica, Econometric Society, vol. 80(2), pages 783-819, March.
    3. L. Alili & A. E. Kyprianou, 2005. "Some remarks on first passage of Levy processes, the American put and pasting principles," Papers math/0508487, arXiv.org.
    4. Renault, Eric & van der Heijden, Thijs & Werker, Bas J.M., 2014. "The dynamic mixed hitting-time model for multiple transaction prices and times," Journal of Econometrics, Elsevier, vol. 180(2), pages 233-250.
    5. G. O. Roberts & C. F. Shortland, 1997. "Pricing Barrier Options with Time–Dependent Coefficients," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 83-93, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruixuan Liu, 2020. "A competing risks model with time‐varying heterogeneity and simultaneous failure," Quantitative Economics, Econometric Society, vol. 11(2), pages 535-577, May.
    2. Yogo Purwono & Irwan Adi Ekaputra & Zaäfri Ananto Husodo, 2018. "Estimation of Dynamic Mixed Hitting Time Model Using Characteristic Function Based Moments," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 295-321, February.
    3. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    4. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    5. Jaap H. Abbring, 0000. "Mixed Hitting-Time Models," Tinbergen Institute Discussion Papers 07-057/3, Tinbergen Institute, revised 11 Aug 2009.
    6. Bekiros, Stelios & Kouloumpou, Dimitra, 2019. "On the pricing of exotic options: A new closed-form valuation approach," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 153-162.
    7. Jaap H. Abbring & Tim Salimans, 2019. "The Likelihood of Mixed Hitting Times," Papers 1905.03463, arXiv.org, revised Apr 2021.
    8. Lin, Yi-Shen, 2024. "A note on one-sided solutions for optimal stopping problems driven by Lévy processes," Statistics & Probability Letters, Elsevier, vol. 206(C).
    9. Abbring, Jaap H. & Salimans, Tim, 2021. "The likelihood of mixed hitting times," Journal of Econometrics, Elsevier, vol. 223(2), pages 361-375.
    10. K. Borovkov & Alexander Novikov, 2004. "Explicit Bounds for Approximation Rates for Boundary Crossing Probabilities for the Wiener Process," Research Paper Series 115, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    12. Flavia Barsotti, 2012. "Optimal Capital Structure with Endogenous Default and Volatility Risk," Working Papers - Mathematical Economics 2012-02, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    13. Hall, George & Rust, John, 2021. "Estimation of endogenously sampled time series: The case of commodity price speculation in the steel market," Journal of Econometrics, Elsevier, vol. 222(1), pages 219-243.
    14. Bo, Lijun & Song, Renming & Tang, Dan & Wang, Yongjin & Yang, Xuewei, 2012. "Lévy risk model with two-sided jumps and a barrier dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 280-291.
    15. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    16. Pötzelberger Klaus, 2012. "Improving the Monte Carlo estimation of boundary crossing probabilities by control variables," Monte Carlo Methods and Applications, De Gruyter, vol. 18(4), pages 353-377, December.
    17. Ferrari, Giorgio & Salminen, Paavo, 2016. "Irreversible Investment under Lévy Uncertainty: an Equation for the Optimal Boundary," Center for Mathematical Economics Working Papers 530, Center for Mathematical Economics, Bielefeld University.
    18. Potiron, Yoann & Mykland, Per A., 2017. "Estimation of integrated quadratic covariation with endogenous sampling times," Journal of Econometrics, Elsevier, vol. 197(1), pages 20-41.
    19. Chi, Zhiyi, 2016. "On exact sampling of the first passage event of a Lévy process with infinite Lévy measure and bounded variation," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1124-1144.
    20. Boudt, Kris & Dragun, Kirill & Sauri, Orimar & Vanduffel, Steven, 2023. "ETF Basket-Adjusted Covariance estimation," Journal of Econometrics, Elsevier, vol. 235(2), pages 1144-1171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:77:y:2025:i:3:d:10.1007_s10463-024-00917-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.