IDEAS home Printed from https://ideas.repec.org/p/flo/wpaper/2012-02.html
   My bibliography  Save this paper

Optimal Capital Structure with Endogenous Default and Volatility Risk

Author

Listed:
  • Flavia Barsotti

    (Dipartimento di Matematica per le Decisioni, Universita' degli Studi di Firenze)

Abstract

This paper analyzes the capital structure of a firm in an infinite time horizon following Leland (1994) under the more general hypothesis that the firm’s assets value process belongs to a fairly large class of stochastic volatility models. By applying singular perturbation theory, we fully describe the (approximate) capital structure of the firm in closed form as a corrected version of Leland (1994) and analyze the stochastic volatility effect on all financial variables. We propose a corrected version of the smooth-fit principle under volatility risk useful to determine the optimal stopping problem solution (i.e. endogenous failure level) and a corrected version for the Laplace transform of the stopping failure time. The numerical analysis obtained from exploiting optimal capital structure shows enhanced spreads and lower leverage ratios w.r.t. Leland (1994), improving results in a robust model-independent way.

Suggested Citation

  • Flavia Barsotti, 2012. "Optimal Capital Structure with Endogenous Default and Volatility Risk," Working Papers - Mathematical Economics 2012-02, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
  • Handle: RePEc:flo:wpaper:2012-02
    as

    Download full text from publisher

    File URL: http://www.disei.unifi.it/upload/sub/pubblicazioni/repec/flo/workingpapers/storicodimad/2012/dimadwp2012-02.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. T. R. Hurd, 2009. "Credit risk modeling using time-changed Brownian motion," Papers 0904.2376, arXiv.org.
    2. Bianca Hilberink & L.C.G. Rogers, 2002. "Optimal capital structure and endogenous default," Finance and Stochastics, Springer, vol. 6(2), pages 237-263.
    3. T. R. Hurd, 2009. "Credit Risk Modeling Using Time-Changed Brownian Motion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(08), pages 1213-1230.
    4. Elisa Nicolato & Emmanouil Venardos, 2003. "Option Pricing in Stochastic Volatility Models of the Ornstein‐Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(4), pages 445-466, October.
    5. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    6. Duffie, Darrell & Lando, David, 2001. "Term Structures of Credit Spreads with Incomplete Accounting Information," Econometrica, Econometric Society, vol. 69(3), pages 633-664, May.
    7. Leland, Hayne E, 1994. "Corporate Debt Value, Bond Covenants, and Optimal Capital Structure," Journal of Finance, American Finance Association, vol. 49(4), pages 1213-1252, September.
    8. Svetlana Boyarchenko & Sergei Levendorskii, 2004. "Real options and the universal bad news principle," Finance 0405011, University Library of Munich, Germany.
    9. Jukka Lempa, 2008. "On infinite horizon optimal stopping of general random walk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(2), pages 257-268, April.
    10. Giesecke, Kay, 2004. "Correlated default with incomplete information," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1521-1545, July.
    11. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    12. David Kelsey & Roman Kozhan & Wei Pang, 2010. "Asymmetric Momentum Effects Under Uncertainty," Review of Finance, European Finance Association, vol. 15(3), pages 603-631.
    13. Tim Bollerslev & Natalia Sizova & George Tauchen, 2011. "Volatility in Equilibrium: Asymmetries and Dynamic Dependencies," Review of Finance, European Finance Association, vol. 16(1), pages 31-80.
    14. Asmussen, Søren & Avram, Florin & Pistorius, Martijn R., 2004. "Russian and American put options under exponential phase-type Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 79-111, January.
    15. Leland, Hayne E & Toft, Klaus Bjerre, 1996. "Optimal Capital Structure, Endogenous Bankruptcy, and the Term Structure of Credit Spreads," Journal of Finance, American Finance Association, vol. 51(3), pages 987-1019, July.
    16. Young Ho Eom, 2004. "Structural Models of Corporate Bond Pricing: An Empirical Analysis," Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 499-544.
    17. Jean‐Paul Décamps & Thomas Mariotti & Jean‐Charles Rochet & Stéphane Villeneuve, 2011. "Free Cash Flow, Issuance Costs, and Stock Prices," Journal of Finance, American Finance Association, vol. 66(5), pages 1501-1544, October.
    18. Svetlana Boyarchenko & Sergei Levendorskii, 2004. "Universal bad news principle and pricing of options on dividend-paying assets," Papers cond-mat/0404108, arXiv.org.
    19. Filippo Fiorani & Elisa Luciano & Patrizia Semeraro, 2007. "Single and joint default in a structural model with purely discontinuous assets," Carlo Alberto Notebooks 41, Collegio Carlo Alberto.
    20. Svetlana I. Boyarchenko & Sergei Z. Levendorskiĭ, 2002. "Lévy processes," World Scientific Book Chapters, in: Non-Gaussian Merton-Black-Scholes Theory, chapter 2, pages 39-66, World Scientific Publishing Co. Pte. Ltd..
    21. Filippo Fiorani & Elisa Luciano & Patrizia Semeraro, 2010. "Single and joint default in a structural model with purely discontinuous asset prices," Quantitative Finance, Taylor & Francis Journals, vol. 10(3), pages 249-263.
    22. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    23. Décamps, Jean-Paul & Mariotti, Thomas & Rochet, Jean-Charles & Villeneuve, Stéphane, 2008. "Free Cash-Flow, Issuance Costs and Stock Price Volatility," IDEI Working Papers 518, Institut d'Économie Industrielle (IDEI), Toulouse.
    24. Kyo Yamamoto & Akihiko Takahashi, 2009. "A Remark on a Singular Perturbation Method for Option Pricing Under a Stochastic Volatility Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(4), pages 333-345, December.
    25. L. Alili & A. E. Kyprianou, 2005. "Some remarks on first passage of Levy processes, the American put and pasting principles," Papers math/0508487, arXiv.org.
    26. Hans Gersbach & Nicolae Surulescu, 2010. "Default Risk in Stochastic Volatility Models," CER-ETH Economics working paper series 10/131, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    27. Nan Chen & S. G. Kou, 2009. "Credit Spreads, Optimal Capital Structure, And Implied Volatility With Endogenous Default And Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 343-378, July.
    28. Medvedev, Alexey & Scaillet, Olivier, 2010. "Pricing American options under stochastic volatility and stochastic interest rates," Journal of Financial Economics, Elsevier, vol. 98(1), pages 145-159, October.
    29. Zhou, Chunsheng, 2001. "The term structure of credit spreads with jump risk," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 2015-2040, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lotfaliei, Babak, 2018. "The variance risk premium and capital structure," ESRB Working Paper Series 70, European Systemic Risk Board.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perrakis, Stylianos & Zhong, Rui, 2015. "Credit spreads and state-dependent volatility: Theory and empirical evidence," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 215-231.
    2. Zbigniew Palmowski & Jos'e Luis P'erez & Budhi Arta Surya & Kazutoshi Yamazaki, 2019. "The Leland-Toft optimal capital structure model under Poisson observations," Papers 1904.03356, arXiv.org, revised Mar 2020.
    3. Nan Chen & S. G. Kou, 2009. "Credit Spreads, Optimal Capital Structure, And Implied Volatility With Endogenous Default And Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 343-378, July.
    4. Abel Elizalde, 2006. "Credit Risk Models II: Structural Models," Working Papers wp2006_0606, CEMFI.
    5. Nystrom, Kaj & Skoglund, Jimmy, 2006. "A credit risk model for large dimensional portfolios with application to economic capital," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2163-2197, August.
    6. Olivier Courtois & Xiaoshan Su, 2020. "Structural Pricing of CoCos and Deposit Insurance with Regime Switching and Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(4), pages 477-520, December.
    7. Masaaki Kijima & Chi Chung Siu, 2014. "Credit-Equity Modeling Under A Latent Lévy Firm Process," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 1-41.
    8. Xiao, Weilin & Zhang, Xili, 2016. "Pricing equity warrants with a promised lowest price in Merton’s jump–diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 219-238.
    9. Zbigniew Palmowski & José Luis Pérez & Budhi Arta Surya & Kazutoshi Yamazaki, 2020. "The Leland–Toft optimal capital structure model under Poisson observations," Finance and Stochastics, Springer, vol. 24(4), pages 1035-1082, October.
    10. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011.
    11. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    12. Guha, Rajiv & Sbuelz, Alessandro & Tarelli, Andrea, 2020. "Structural recovery of face value at default," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1148-1171.
    13. Gryglewicz, Sebastian, 2011. "A theory of corporate financial decisions with liquidity and solvency concerns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 365-384, February.
    14. Giesecke, Kay, 2006. "Default and information," Journal of Economic Dynamics and Control, Elsevier, vol. 30(11), pages 2281-2303, November.
    15. Liu, Liang-Chih & Dai, Tian-Shyr & Wang, Chuan-Ju, 2016. "Evaluating corporate bonds and analyzing claim holders’ decisions with complex debt structure," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 151-174.
    16. Jean-Paul Décamps & Stéphane Villeneuve, 2014. "Rethinking Dynamic Capital Structure Models With Roll-Over Debt," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 66-96, January.
    17. Michael L. McIntyre, 2023. "A characterization of the Lender's position in the context of contractual loan conditions," SN Business & Economics, Springer, vol. 3(8), pages 1-27, August.
    18. Leonard Tchuindjo, 2007. "Pricing of Multi-Defaultable Bonds with a Two-Correlated-Factor Hull-White Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 19-39.
    19. Niu, Huawei & Hua, Wei, 2019. "An endogenous structural credit risk model incorporating with moral hazard and rollover risk," Economic Modelling, Elsevier, vol. 78(C), pages 47-59.
    20. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.

    More about this item

    Keywords

    structural model; stochastic volatility; volatility time scales; endogenous default; optimal stopping;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:flo:wpaper:2012-02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michele Gori (email available below). General contact details of provider: https://edirc.repec.org/data/defirit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.