IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0904.2376.html
   My bibliography  Save this paper

Credit risk modeling using time-changed Brownian motion

Author

Listed:
  • T. R. Hurd

Abstract

Motivated by the interplay between structural and reduced form credit models, we propose to model the firm value process as a time-changed Brownian motion that may include jumps and stochastic volatility effects, and to study the first passage problem for such processes. We are lead to consider modifying the standard first passage problem for stochastic processes to capitalize on this time change structure and find that the distribution functions of such "first passage times of the second kind" are efficiently computable in a wide range of useful examples. Thus this new notion of first passage can be used to define the time of default in generalized structural credit models. Formulas for defaultable bonds and credit default swaps are given that are both efficiently computable and lead to realistic spread curves. Finally, we show that by treating joint firm value processes as dependent time changes of independent Brownian motions, one can obtain multifirm credit models with rich and plausible dynamics and enjoying the possibility of efficient valuation of portfolio credit derivatives.

Suggested Citation

  • T. R. Hurd, 2009. "Credit risk modeling using time-changed Brownian motion," Papers 0904.2376, arXiv.org.
  • Handle: RePEc:arx:papers:0904.2376
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0904.2376
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    2. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salem, Marwa Belhaj & Fouladirad, Mitra & Deloux, Estelle, 2022. "Variance Gamma process as degradation model for prognosis and imperfect maintenance of centrifugal pumps," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Thomas R. Hurd & Zhuowei Zhou, 2011. "Two-factor capital structure models for equity and credit," Papers 1110.5846, arXiv.org.
    3. Fernández Lexuri & Hieber Peter & Scherer Matthias, 2013. "Double-barrier first-passage times of jump-diffusion processes," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 107-141, July.
    4. Marwa Belhaj Salem & Mitra Fouladirad & Estelle Deloux, 2021. "Prognostic and Classification of Dynamic Degradation in a Mechanical System Using Variance Gamma Process," Mathematics, MDPI, vol. 9(3), pages 1-25, January.
    5. Flavia Barsotti, 2012. "Optimal Capital Structure with Endogenous Default and Volatility Risk," Working Papers - Mathematical Economics 2012-02, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    6. Hieber, Peter & Scherer, Matthias, 2012. "A note on first-passage times of continuously time-changed Brownian motion," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 165-172.
    7. T. R. Hurd & Zhuowei Zhou, 2011. "Statistical Inference for Time-changed Brownian Motion Credit Risk Models," Papers 1102.2412, arXiv.org.
    8. Mario Abundo, 2018. "The Randomized First-Hitting Problem of Continuously Time-Changed Brownian Motion," Mathematics, MDPI, vol. 6(6), pages 1-10, May.
    9. Zhang, Yuxin & Brockett, Patrick, 2020. "Modeling stochastic mortality for joint lives through subordinators," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 166-172.
    10. Marcos Escobar & Peter Hieber & Matthias Scherer, 2014. "Efficiently pricing double barrier derivatives in stochastic volatility models," Review of Derivatives Research, Springer, vol. 17(2), pages 191-216, July.
    11. Son-Nan Chen & Pao-Peng Hsu & Chang-Yi Li, 2016. "Pricing credit-risky bonds and spread options modelling credit-spread term structures with two-dimensional Markov-modulated jump-diffusion," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 573-592, April.
    12. Masaaki Kijima & Chi Chung Siu, 2014. "Credit-Equity Modeling Under A Latent Lévy Firm Process," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 1-41.
    13. Cantia, Catalin & Tunaru, Radu, 2017. "A factor model for joint default probabilities. Pricing of CDS, index swaps and index tranches," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 21-35.
    14. Omar, Arti & Prasanna, P. Krishna, 2021. "Asymmetric effects of noise in Merton default risk model: Evidence from emerging Asia," Pacific-Basin Finance Journal, Elsevier, vol. 65(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    2. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    3. Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
    4. Fulvio Corsi & Stefano Peluso & Francesco Audrino, 2015. "Missing in Asynchronicity: A Kalman‐em Approach for Multivariate Realized Covariance Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(3), pages 377-397, April.
    5. Bibinger, Markus & Mykland, Per A., 2013. "Inference for multi-dimensional high-frequency data: Equivalence of methods, central limit theorems, and an application to conditional independence testing," SFB 649 Discussion Papers 2013-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    7. Edoardo Berton & Lorenzo Mercuri, 2024. "An efficient unified approach for spread option pricing in a copula market model," Annals of Operations Research, Springer, vol. 336(1), pages 307-329, May.
    8. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    9. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
    10. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    11. Claudia Ceci & Michele Bufalo & Giuseppe Orlando, 2024. "Modelling the industrial production of electric and gas utilities through the $$CIR^3$$ C I R 3 model," Mathematics and Financial Economics, Springer, volume 18, number 1, September.
    12. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    13. Imma Valentina Curato & Simona Sanfelici, 2019. "Stochastic leverage effect in high-frequency data: a Fourier based analysis," Papers 1910.06660, arXiv.org, revised Mar 2021.
    14. Ole E. Barndorff-Nielsen & Svend Erik Graversen & Neil Shephard, 2003. "Power variation & stochastic volatility: a review and some new results," Economics Papers 2003-W19, Economics Group, Nuffield College, University of Oxford.
    15. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    16. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    17. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2004. "Analytical Evaluation Of Volatility Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(4), pages 1079-1110, November.
    18. Hounyo, Ulrich & Gonçalves, Sílvia & Meddahi, Nour, 2017. "Bootstrapping Pre-Averaged Realized Volatility Under Market Microstructure Noise," Econometric Theory, Cambridge University Press, vol. 33(4), pages 791-838, August.
    19. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    20. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0904.2376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.