IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Statistical Inference for Time-changed Brownian Motion Credit Risk Models

Listed author(s):
  • T. R. Hurd
  • Zhuowei Zhou
Registered author(s):

    We consider structural credit modeling in the important special case where the log-leverage ratio of the firm is a time-changed Brownian motion (TCBM) with the time-change taken to be an independent increasing process. Following the approach of Black and Cox, one defines the time of default to be the first passage time for the log-leverage ratio to cross the level zero. Rather than adopt the classical notion of first passage, with its associated numerical challenges, we accept an alternative notion applicable for TCBMs called "first passage of the second kind". We demonstrate how statistical inference can be efficiently implemented in this new class of models. This allows us to compare the performance of two versions of TCBMs, the variance gamma (VG) model and the exponential jump model (EXP), to the Black-Cox model. When applied to a 4.5 year long data set of weekly credit default swap (CDS) quotes for Ford Motor Co, the conclusion is that the two TCBM models, with essentially one extra parameter, can significantly outperform the classic Black-Cox model.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1102.2412.

    in new window

    Date of creation: Feb 2011
    Handle: RePEc:arx:papers:1102.2412
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1102.2412. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.