IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i3p254-d488239.html
   My bibliography  Save this article

Prognostic and Classification of Dynamic Degradation in a Mechanical System Using Variance Gamma Process

Author

Listed:
  • Marwa Belhaj Salem

    (ICD-M2S, University of Technology of Troyes, 10000 Troyes, France)

  • Mitra Fouladirad

    (ICD-M2S, University of Technology of Troyes, 10000 Troyes, France)

  • Estelle Deloux

    (ICD-M2S, University of Technology of Troyes, 10000 Troyes, France)

Abstract

Recently, maintaining a complex mechanical system at the appropriate times is considered a significant task for reliability engineers and researchers. Moreover, the development of advanced mechanical systems and the dynamics of the operating environments raises the complexity of a system’s degradation behaviour. In this aspect, an efficient maintenance policy is of great importance, and a better modelling of the operating system’s degradation is essential. In this study, the non-monotonic degradation of a centrifugal pump system operating in the dynamic environment is considered and modelled using variance gamma stochastic process. The covariates are introduced to present the dynamic environmental effects and are modelled using a finite state Markov chain. The degradation of the system in the presence of covariates is modelled and prognostic results are analysed. Two machine learning algorithms k-nearest-neighbour (KNN) and neural network (NN) are applied to identify the various characteristics of degradation and the environmental conditions. A predefined degradation threshold is assigned and used to propose a prognostic result for each classification state. It was observed that this methodology shows promising prognostic results.

Suggested Citation

  • Marwa Belhaj Salem & Mitra Fouladirad & Estelle Deloux, 2021. "Prognostic and Classification of Dynamic Degradation in a Mechanical System Using Variance Gamma Process," Mathematics, MDPI, vol. 9(3), pages 1-25, January.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:3:p:254-:d:488239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/3/254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/3/254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. T. R. Hurd, 2009. "Credit risk modeling using time-changed Brownian motion," Papers 0904.2376, arXiv.org.
    3. T. R. Hurd, 2009. "Credit Risk Modeling Using Time-Changed Brownian Motion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(08), pages 1213-1230.
    4. Xiujie Zhao & Olivier Gaudoin & Laurent Doyen & Min Xie, 2019. "Optimal inspection and replacement policy based on experimental degradation data with covariates," IISE Transactions, Taylor & Francis Journals, vol. 51(3), pages 322-336, March.
    5. Liu, Bin & Zhao, Xiujie & Liu, Guoquan & Liu, Yiqi, 2020. "Life cycle cost analysis considering multiple dependent degradation processes and environmental influence," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    6. Suwan Park & Hwandon Jun & Newland Agbenowosi & Bong Kim & Kiyoung Lim, 2011. "The Proportional Hazards Modeling of Water Main Failure Data Incorporating the Time-dependent Effects of Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 1-19, January.
    7. Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2011. "Maintainability analysis considering time-dependent and time-independent covariates," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 210-217.
    8. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    9. Amin Moniri-Morad & Mohammad Pourgol-Mohammad & Hamid Aghababaei & Javad Sattarvand, 2019. "Reliability-based covariate analysis for complex systems in heterogeneous environment: Case study of mining equipment," Journal of Risk and Reliability, , vol. 233(4), pages 593-604, August.
    10. Zhao, Xuejing & Fouladirad, Mitra & Bérenguer, Christophe & Bordes, Laurent, 2010. "Condition-based inspection/replacement policies for non-monotone deteriorating systems with environmental covariates," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 921-934.
    11. Roberto Marfè, 2012. "A generalized variance gamma process for financial applications," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 75-87, June.
    12. Wu, Shaomin & Scarf, Philip, 2015. "Decline and repair, and covariate effects," European Journal of Operational Research, Elsevier, vol. 244(1), pages 219-226.
    13. Tang, Diyin & Makis, Viliam & Jafari, Leila & Yu, Jinsong, 2015. "Optimal maintenance policy and residual life estimation for a slowly degrading system subject to condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 198-207.
    14. Bartłomiej Bollin & Robert Ślepaczuk, 2020. "Variance Gamma Model in Hedging Vanilla and Exotic Options," Working Papers 2020-31, Faculty of Economic Sciences, University of Warsaw.
    15. Zhibing Xu & Yili Hong & Ran Jin, 2016. "Nonlinear general path models for degradation data with dynamic covariates," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(2), pages 153-167, March.
    16. Odd O. Aalen & Ørnulf Borgan & Harald Fekjær, 2001. "Covariate Adjustment of Event Histories Estimated from Markov Chains: The Additive Approach," Biometrics, The International Biometric Society, vol. 57(4), pages 993-1001, December.
    17. Okaro, Ikenna Anthony & Tao, Longbin, 2016. "Reliability analysis and optimisation of subsea compression system facing operational covariate stresses," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 159-174.
    18. Zhang, Nan & Fouladirad, Mitra & Barros, Anne, 2019. "Reliability-based measures and prognostic analysis of a K-out-of-N system in a random environment," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1120-1131.
    19. Fiorani, Filo, 2004. "Option Pricing Under the Variance Gamma Process," MPRA Paper 15395, University Library of Munich, Germany.
    20. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    21. Deloux, E. & Castanier, B. & Bérenguer, C., 2009. "Predictive maintenance policy for a gradually deteriorating system subject to stress," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 418-431.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Yan & Jing, Yunteng & Wu, Tonghai & Kong, Xiangxing, 2022. "Knowledge-based data augmentation of small samples for oil condition prediction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salem, Marwa Belhaj & Fouladirad, Mitra & Deloux, Estelle, 2022. "Variance Gamma process as degradation model for prognosis and imperfect maintenance of centrifugal pumps," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    3. Zhang, Nan & Deng, Yingjun & Liu, Bin & Zhang, Jun, 2023. "Condition-based maintenance for a multi-component system in a dynamic operating environment," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Ricardo Crisóstomo, 2017. "Speed and biases of Fourier-based pricing choices: Analysis of the Bates and Asymmetric Variance Gamma models," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    5. Ulze, Markus & Stadler, Johannes & Rathgeber, Andreas W., 2021. "No country for old distributions? On the comparison of implied option parameters between the Brownian motion and variance gamma process," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 163-184.
    6. Liu, Bin & Zhao, Xiujie & Liu, Guoquan & Liu, Yiqi, 2020. "Life cycle cost analysis considering multiple dependent degradation processes and environmental influence," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    7. Caballé, N.C. & Castro, I.T. & Pérez, C.J. & Lanza-Gutiérrez, J.M., 2015. "A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 98-109.
    8. Estelle Deloux & Mitra Fouladirad & Christophe Bérenguer, 2016. "Health-and-usage-based maintenance policies for a partially observable deteriorating system," Journal of Risk and Reliability, , vol. 230(1), pages 120-129, February.
    9. Vilca, Filidor & Balakrishnan, N. & Zeller, Camila Borelli, 2014. "Multivariate Skew-Normal Generalized Hyperbolic distribution and its properties," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 73-85.
    10. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    11. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    12. Lam, K. & Chang, E. & Lee, M. C., 2002. "An empirical test of the variance gamma option pricing model," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 267-285, June.
    13. Fu, Qi & So, Jacky Yuk-Chow & Li, Xiaotong, 2024. "Stable paretian distribution, return generating processes and habit formation—The implication for equity premium puzzle," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    14. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    15. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    16. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, July.
    17. Fernández Lexuri & Hieber Peter & Scherer Matthias, 2013. "Double-barrier first-passage times of jump-diffusion processes," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 107-141, July.
    18. Luca Spadafora & Marco Dubrovich & Marcello Terraneo, 2014. "Value-at-Risk time scaling for long-term risk estimation," Papers 1408.2462, arXiv.org.
    19. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    20. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:3:p:254-:d:488239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.