IDEAS home Printed from https://ideas.repec.org/b/spr/mathfi/v18y2024i1d10.1007_s11579-023-00350-y.html
   My bibliography  Save this book

Modelling the industrial production of electric and gas utilities through the $$CIR^3$$ C I R 3 model

Author

Listed:
  • Claudia Ceci

    (Università degli Studi di Roma “La Sapienza”)

  • Michele Bufalo

    (Università degli Studi di Roma “La Sapienza”)

  • Giuseppe Orlando

    (Università degli Studi di Bari “Aldo Moro”
    University of Jaen
    HSE University)

Abstract

This work aims to extend previous research on how a trifactorial stochastic model, which we call $$CIR^3$$ C I R 3 , can be turned into a forecasting tool for energy time series. In particular, in this work, we intend to predict changes in the industrial production of electric and gas utilities. The model accounts for several stylized facts such as the mean reversion of both the process and its volatility to a short-run mean, non-normality, autocorrelation, cluster volatility and fat tails. In addition to that, we provide two theoretical results which are of particular importance in modelling and simulations. The first is the proof of existence and uniqueness of the solution to the SDEs system that describes the model. The second theoretical result is to convert, by the means of Lamperti transformations, the correlated system into an uncorrelated one. The forecasting performance is tested against an ARIMA-GARCH and a nonlinear regression model (NRM).

Suggested Citation

  • Claudia Ceci & Michele Bufalo & Giuseppe Orlando, 2024. "Modelling the industrial production of electric and gas utilities through the $$CIR^3$$ C I R 3 model," Mathematics and Financial Economics, Springer, volume 18, number 1, February.
  • Handle: RePEc:spr:mathfi:v:18:y:2024:i:1:d:10.1007_s11579-023-00350-y
    DOI: 10.1007/s11579-023-00350-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11579-023-00350-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11579-023-00350-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Lipton & Andrey Gal & Andris Lasis, 2014. "Pricing of vanilla and first-generation exotic options in the local stochastic volatility framework: survey and new results," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1899-1922, November.
    2. Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
    3. Luis M. Abadie, 2021. "Energy Market Prices in Times of COVID-19: The Case of Electricity and Natural Gas in Spain," Energies, MDPI, vol. 14(6), pages 1-17, March.
    4. de Jong,Piet & Heller,Gillian Z., 2008. "Generalized Linear Models for Insurance Data," Cambridge Books, Cambridge University Press, number 9780521879149, December.
    5. Abdullah Gulcu & Dilem Yildirim, 2019. "Smooth breaks and nonlinear mean reversion in real interest parity: Evidence from East Asian countries," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 28(6), pages 668-685, August.
    6. Stephen J. Brown, 2020. "The Efficient Market Hypothesis, the Financial Analysts Journal, and the Professional Status of Investment Management," Financial Analysts Journal, Taylor & Francis Journals, vol. 76(2), pages 5-14, April.
    7. Boya, Christophe M., 2019. "From efficient markets to adaptive markets: Evidence from the French stock exchange," Research in International Business and Finance, Elsevier, vol. 49(C), pages 156-165.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    9. Gonzales Chavez, S & Xiberta Bernat, J & Llaneza Coalla, H, 1999. "Forecasting of energy production and consumption in Asturias (northern Spain)," Energy, Elsevier, vol. 24(3), pages 183-198.
    10. Anthonie W. Van Der Stoep & Lech A. Grzelak & Cornelis W. Oosterlee, 2014. "The Heston Stochastic-Local Volatility Model: Efficient Monte Carlo Simulation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(07), pages 1-30.
    11. Chortareas, Georgios E. & Kapetanios, George & Shin, Yongcheol, 2002. "Nonlinear mean reversion in real exchange rates," Economics Letters, Elsevier, vol. 77(3), pages 411-417, November.
    12. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    13. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    14. Chen, Lin, 1996. "A bond pricing formula under a non-trivial, three-factor model of interest rates," Economics Letters, Elsevier, vol. 51(1), pages 95-99, April.
    15. Rui Dias & Nuno Teixeira & Veronika Machova & Pedro Pardal & Jakub Horak & Marek Vochozka, 2020. "Random walks and market efficiency tests: evidence on US, Chinese and European capital markets within the context of the global Covid-19 pandemic," Oeconomia Copernicana, Institute of Economic Research, vol. 11(4), pages 585-608, December.
    16. Wong, Hoi Ying & Lo, Yu Wai, 2009. "Option pricing with mean reversion and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 197(1), pages 179-187, August.
    17. Soares, Lacir J. & Medeiros, Marcelo C., 2008. "Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 630-644.
    18. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    19. Bali, Turan G. & Demirtas, K. Ozgur & Levy, Haim, 2008. "Nonlinear mean reversion in stock prices," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 767-782, May.
    20. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    21. Orlando, Giuseppe & Bufalo, Michele, 2022. "Modelling bursts and chaos regularization in credit risk with a deterministic nonlinear model," Finance Research Letters, Elsevier, vol. 47(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bufalo, Michele & Orlando, Giuseppe, 2023. "A three-factor stochastic model for forecasting production of energy materials," Finance Research Letters, Elsevier, vol. 51(C).
    2. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    3. Nikita Medvedev & Zhiguang Wang, 2022. "Multistep forecast of the implied volatility surface using deep learning," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(4), pages 645-667, April.
    4. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    5. Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
    6. Meng, Fanyi & Liu, Li, 2019. "Analyzing the economic sources of oil price volatility: An out-of-sample perspective," Energy, Elsevier, vol. 177(C), pages 476-486.
    7. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    8. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    9. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    11. Massimiliano Marzo & Paolo Zagaglia, 2010. "Volatility forecasting for crude oil futures," Applied Economics Letters, Taylor & Francis Journals, vol. 17(16), pages 1587-1599.
    12. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    13. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    14. Mohammadi, M. & Rezakhah, S. & Modarresi, N., 2020. "Semi-Lévy driven continuous-time GARCH process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    15. Edoardo Berton & Lorenzo Mercuri, 2024. "An efficient unified approach for spread option pricing in a copula market model," Annals of Operations Research, Springer, vol. 336(1), pages 307-329, May.
    16. da Veiga, Bernardo & Chan, Felix & McAleer, Michael, 2008. "Evaluating the impact of market reforms on Value-at-Risk forecasts of Chinese A and B shares," Pacific-Basin Finance Journal, Elsevier, vol. 16(4), pages 453-475, September.
    17. Harvey, David I. & Newbold, Paul, 2003. "The non-normality of some macroeconomic forecast errors," International Journal of Forecasting, Elsevier, vol. 19(4), pages 635-653.
    18. Zied Ftiti & Kais Tissaoui & Sahbi Boubaker, 2022. "On the relationship between oil and gas markets: a new forecasting framework based on a machine learning approach," Annals of Operations Research, Springer, vol. 313(2), pages 915-943, June.
    19. Kavussanos, Manolis G. & Dimitrakopoulos, Dimitris N., 2011. "Market risk model selection and medium-term risk with limited data: Application to ocean tanker freight markets," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 258-268.
    20. Liu, Zhicao & Ye, Yong & Ma, Feng & Liu, Jing, 2017. "Can economic policy uncertainty help to forecast the volatility: A multifractal perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 181-188.

    More about this item

    Keywords

    Energy; Forecasting; Three-factor stochastic model; Stochastic differential equations;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathfi:v:18:y:2024:i:1:d:10.1007_s11579-023-00350-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.