IDEAS home Printed from
   My bibliography  Save this paper

Volatility forecasting for crude oil futures




This paper studies the forecasting properties of linear GARCH models for closing-day futures prices on crude oil, first position, traded in the New York Mercantile Exchange from January 1995 to November 2005. In order to account for fat tails in the empirical distribution of the series, we compare models based on the normal, Student’s t and Generalized Exponential distribution. We focus on out-of-sample predictability by ranking the models according to a large array of statistical loss functions. The results from the tests for predictive ability show that the GARCH-G model fares best for short horizons from one to three days ahead. For horizons from one week ahead, no superior model can be identified. We also consider out-of-sample loss functions based on Value-at-Risk that mimic portfolio managers and regulators’ preferences. EGARCH models display the best performance in this case.

Suggested Citation

  • Marzo, Massimiliano & Zagaglia, Paolo, 2007. "Volatility forecasting for crude oil futures," Research Papers in Economics 2007:9, Stockholm University, Department of Economics.
  • Handle: RePEc:hhs:sunrpe:2007_0009

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    2. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    3. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    4. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Fleming, Jeff & Ostdiek, Barbara, 1999. "The impact of energy derivatives on the crude oil market," Energy Economics, Elsevier, vol. 21(2), pages 135-167, April.
    7. Fong, Wai Mun & See, Kim Hock, 2002. "A Markov switching model of the conditional volatility of crude oil futures prices," Energy Economics, Elsevier, vol. 24(1), pages 71-95, January.
    8. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    9. Marcucci Juri, 2005. "Forecasting Stock Market Volatility with Regime-Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-55, December.
    10. Gita Persand & Chris Brooks, 2003. "Volatility forecasting for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 1-22.
    11. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    12. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    13. Ewing, Bradley T. & Malik, Farooq & Ozfidan, Ozkan, 2002. "Volatility transmission in the oil and natural gas markets," Energy Economics, Elsevier, vol. 24(6), pages 525-538, November.
    14. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Charles, Amélie & Darné, Olivier, 2014. "Volatility persistence in crude oil markets," Energy Policy, Elsevier, vol. 65(C), pages 729-742.
    2. Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
    3. Haugom, Erik & Langeland, Henrik & Molnár, Peter & Westgaard, Sjur, 2014. "Forecasting volatility of the U.S. oil market," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 1-14.
    4. Samir MABROUK, 2017. "Volatility Modelling and Parametric Value-At-Risk Forecast Accuracy: Evidence from Metal Products," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 7(1), pages 63-80, January.
    5. Jakobsson, Kristofer & Söderbergh, Bengt & Snowden, Simon & Li, Chuan-Zhong & Aleklett, Kjell, 2012. "Oil exploration and perceptions of scarcity: The fallacy of early success," Energy Economics, Elsevier, vol. 34(4), pages 1226-1233.
    6. Raúl De Jesús Gutiérrez & Reyna Vergara González & Miguel A. Díaz Carreño, 2015. "Predicción de la volatilidad en el mercado del petróleo mexicano ante la presencia de efectos asimétricos," REVISTA CUADERNOS DE ECONOMÍA, UN - RCE - CID, March.
    7. Chaker Aloui & Hela BEN HAMIDA, 2015. "Estimation and Performance Assessment of Value-at-Risk and Expected Shortfall Based on Long-Memory GARCH-Class Models," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(1), pages 30-54, January.
    8. Li, Haiqi & Kim, Hyung-Gun & Park, Sung Y., 2015. "The role of financial speculation in the energy future markets: A new time-varying coefficient approach," Economic Modelling, Elsevier, vol. 51(C), pages 112-122.
    9. Yue-Jun Zhang & Ting Yao & Ling-Yun He, 2015. "Forecasting crude oil market volatility: can the Regime Switching GARCH model beat the single-regime GARCH models?," Papers 1512.01676,
    10. Aloui, Chaker & Hamida, Hela ben, 2014. "Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 349-380.
    11. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    12. Chaker Aloui, 2015. "Volatility forecasting and risk management in some MENA stock markets: a nonlinear framework," Afro-Asian Journal of Finance and Accounting, Inderscience Enterprises Ltd, vol. 5(2), pages 160-192.
    13. Samet Günay, 2015. "Markov Regime Switching Generalized Autoregressive Conditional Heteroskedastic Model and Volatility Modeling for Oil Returns," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 979-985.
    14. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
    15. Xu, Bing & Ouenniche, Jamal, 2012. "A data envelopment analysis-based framework for the relative performance evaluation of competing crude oil prices' volatility forecasting models," Energy Economics, Elsevier, vol. 34(2), pages 576-583.
    16. repec:eee:eneeco:v:67:y:2017:i:c:p:508-519 is not listed on IDEAS

    More about this item


    GARCH models; kurtosis; oil prices; forecasting;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G19 - Financial Economics - - General Financial Markets - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:sunrpe:2007_0009. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sten Nyberg). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.