IDEAS home Printed from https://ideas.repec.org/a/rfb/journl/v12y2020i2p115-136.html
   My bibliography  Save this article

Does Trading Volume explain the Information Flow of Crude Palm Oil Futures Returns?

Author

Listed:
  • You-How Go
  • Wee-Yeap Lau

Abstract

This study examines the role of trading volume in the crude palm oil (CPO) futures market as a proxy for information flow from the perspective of the mixture-of-distributions hypothesis (MDH). Using the data from January 2000 to April 2017, a symmetric GARCH model has been estimated, in which the residuals follow alternatively the normal Student-t and generalised error distribution. An alternative augmented model that consists of trading volume as an exogenous variable is estimated with the same error distributions. Our results suggest several conclusions: First, the trading volume could not act as a true proxy for information flow. This indicates that volume of futures trading contains relatively less price-sensitive information. Secondly, the inclusion of trading volume into the conditional variance equation with Student-t distributed errors is important for modelling purposes when the returns are leptokurtic and positively skewed. Hence, it can be concluded that the use of return and trading volume will enhance the current information set used by practitioners and analysts in pricing the CPO futures contract when there exists a high degree of leptokurtosis in the returns. This is the first study that validates the MDH in the context of the CPO futures market.

Suggested Citation

  • You-How Go & Wee-Yeap Lau, 2020. "Does Trading Volume explain the Information Flow of Crude Palm Oil Futures Returns?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 12(2), pages 115-136, December.
  • Handle: RePEc:rfb:journl:v:12:y:2020:i:2:p:115-136
    as

    Download full text from publisher

    File URL: http://rfb.ase.ro/articole/Articol2_dec2020.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guillaume Gaetan Martinet & Michael McAleer, 2018. "On the invertibility of EGARCH(p, q)," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 824-849, September.
    2. Le, Van & Zurbruegg, Ralf, 2010. "The role of trading volume in volatility forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(5), pages 533-555, December.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
    5. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    6. Epps, Thomas W & Epps, Mary Lee, 1976. "The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis," Econometrica, Econometric Society, vol. 44(2), pages 305-321, March.
    7. Chang, Chia-Lin & McAleer, Michael, 2017. "The correct regularity condition and interpretation of asymmetry in EGARCH," Economics Letters, Elsevier, vol. 161(C), pages 52-55.
    8. Richardson, Matthew & Smith, Tom, 1994. "A Direct Test of the Mixture of Distributions Hypothesis: Measuring the Daily Flow of Information," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(1), pages 101-116, March.
    9. Ané, Thierry & Ureche-Rangau, Loredana, 2008. "Does trading volume really explain stock returns volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(3), pages 216-235, July.
    10. Brian M. Lucey, 2005. "Does volume provide information? Evidence from the Irish Stock Market," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 1(2), pages 105-109, March.
    11. Go, You-How & Lau, Wee-Yeap, 2020. "The impact of global financial crisis on informational efficiency: Evidence from price-volume relation in crude palm oil futures market," Journal of Commodity Markets, Elsevier, vol. 17(C).
    12. Blattberg, Robert C & Gonedes, Nicholas J, 1974. "A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices," The Journal of Business, University of Chicago Press, vol. 47(2), pages 244-280, April.
    13. Olivier Wintenberger, 2013. "Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
    14. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    15. T. Ane & L. Ureche-Rangau, 2008. "Does Trading Volume Really Explain Stock Returns Volatility ?," Post-Print hal-00260668, HAL.
    16. Rachael Carroll & Colm Kearney, 2012. "Do trading volumes explain the persistence of GARCH effects?," Applied Financial Economics, Taylor & Francis Journals, vol. 22(23), pages 1993-2008, December.
    17. Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
    18. Barberis, Nicholas & Shleifer, Andrei & Vishny, Robert, 1998. "A model of investor sentiment," Journal of Financial Economics, Elsevier, vol. 49(3), pages 307-343, September.
    19. Zhong, Maosen & Darrat, Ali F. & Otero, Rafael, 2004. "Price discovery and volatility spillovers in index futures markets: Some evidence from Mexico," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 3037-3054, December.
    20. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    21. Suominen, Matti, 2001. "Trading Volume and Information Revelation in Stock Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 36(4), pages 545-565, December.
    22. Andrew J. Foster, 1995. "Volume‐volatility relationships for crude oil futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(8), pages 929-951, December.
    23. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
    24. Cheong, Chin Wen, 2009. "Modeling and forecasting crude oil markets using ARCH-type models," Energy Policy, Elsevier, vol. 37(6), pages 2346-2355, June.
    25. repec:hrv:faseco:30747159 is not listed on IDEAS
    26. Lobato, Ignacio N & Velasco, Carlos, 2000. "Long Memory in Stock-Market Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 410-427, October.
    27. Bollerslev, Tim & Jubinski, Dan, 1999. "Equity Trading Volume and Volatility: Latent Information Arrivals and Common Long-Run Dependencies," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 9-21, January.
    28. Liesenfeld, Roman, 2001. "A generalized bivariate mixture model for stock price volatility and trading volume," Journal of Econometrics, Elsevier, vol. 104(1), pages 141-178, August.
    29. Lamoureux, Christopher G & Lastrapes, William D, 1994. "Endogenous Trading Volume and Momentum in Stock-Return Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 253-260, April.
    30. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    31. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    32. Massimiliano Marzo & Paolo Zagaglia, 2010. "Volatility forecasting for crude oil futures," Applied Economics Letters, Taylor & Francis Journals, vol. 17(16), pages 1587-1599.
    33. Epps, Thomas W, 1975. "Security Price Changes and Transaction Volumes: Theory and Evidence," American Economic Review, American Economic Association, vol. 65(4), pages 586-597, September.
    34. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. "Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-181, March.
    35. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    36. Harris, Lawrence, 1987. "Transaction Data Tests of the Mixture of Distributions Hypothesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(2), pages 127-141, June.
    37. Hou, Aijun & Suardi, Sandy, 2012. "A nonparametric GARCH model of crude oil price return volatility," Energy Economics, Elsevier, vol. 34(2), pages 618-626.
    38. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Go, You-How & Lau, Wee-Yeap, 2020. "The impact of global financial crisis on informational efficiency: Evidence from price-volume relation in crude palm oil futures market," Journal of Commodity Markets, Elsevier, vol. 17(C).
    2. Carroll, Rachael & Kearney, Colm, 2015. "Testing the mixture of distributions hypothesis on target stocks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 39(C), pages 1-14.
    3. Jawadi Fredj & Ureche-Rangau Loredana, 2013. "Threshold linkages between volatility and trading volume: evidence from developed and emerging markets," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 313-333, May.
    4. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    5. Brajesh Kumar & Priyanka Singh & Ajay Pandey, 2010. "The Dynamic Relationship between Price and Trading Volume: Evidence from Indian Stock Market," Working Papers id:2379, eSocialSciences.
    6. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    7. Loredana Ureche-Rangau & Quiterie de Rorthays, 2009. "More on the volatility-trading volume relationship in emerging markets: The Chinese stock market," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(7), pages 779-799.
    8. Henryk Gurgul & Roland Mestel & Tomasz Wojtowicz, 2007. "Distribution of volume on the American stock market," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 1, pages 143-163.
    9. Taylor, Nicholas, 2008. "Can idiosyncratic volatility help forecast stock market volatility?," International Journal of Forecasting, Elsevier, vol. 24(3), pages 462-479.
    10. repec:zbw:cfswop:wp200508 is not listed on IDEAS
    11. Kumar, Brajesh & Singh, Priyanka & Pandey, Ajay, 2009. "The Dynamic Relationship between Price and Trading Volume:Evidence from Indian Stock Market," IIMA Working Papers WP2009-12-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
    12. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    13. Niklas Wagner & Terry Marsh, 2005. "Surprise volume and heteroskedasticity in equity market returns," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 153-168.
    14. Sam Howison & David Lamper, 2001. "Trading volume in models of financial derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 119-135.
    15. Senarathne, Chamil W & Jayasinghe, Prabhath, 2017. "Information Flow Interpretation of Heteroskedasticity for Capital Asset Pricing: An Expectation-based View of Risk," MPRA Paper 78771, University Library of Munich, Germany, revised 04 Apr 2017.
    16. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 12(2), pages 1-18, June.
    17. Kao, Yu-Sheng & Chuang, Hwei-Lin & Ku, Yu-Cheng, 2020. "The empirical linkages among market returns, return volatility, and trading volume: Evidence from the S&P 500 VIX Futures," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    18. Koubaa, Yosra & Slim, Skander, 2019. "The relationship between trading activity and stock market volatility: Does the volume threshold matter?," Economic Modelling, Elsevier, vol. 82(C), pages 168-184.
    19. Chen, Gong-meng & Firth, Michael & Rui, Oliver M, 2001. "The Dynamic Relation between Stock Returns, Trading Volume, and Volatility," The Financial Review, Eastern Finance Association, vol. 36(3), pages 153-173, August.
    20. Alizadeh, Amir H. & Tamvakis, Michael, 2016. "Market conditions, trader types and price–volume relation in energy futures markets," Energy Economics, Elsevier, vol. 56(C), pages 134-149.
    21. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rfb:journl:v:12:y:2020:i:2:p:115-136. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/ffasero.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tatu Lucian (email available below). General contact details of provider: https://edirc.repec.org/data/ffasero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.