IDEAS home Printed from
   My bibliography  Save this paper

Some remarks on first passage of Levy processes, the American put and pasting principles


  • L. Alili
  • A. E. Kyprianou


The purpose of this article is to provide, with the help of a fluctuation identity, a generic link between a number of known identities for the first passage time and overshoot above/below a fixed level of a Levy process and the solution of Gerber and Shiu [Astin Bull. 24 (1994) 195-220], Boyarchenko and Levendorskii [Working paper series EERS 98/02 (1998), Unpublished manuscript (1999), SIAM J. Control Optim. 40 (2002) 1663-1696], Chan [Original unpublished manuscript (2000)], Avram, Chan and Usabel [Stochastic Process. Appl. 100 (2002) 75-107], Mordecki [Finance Stoch. 6 (2002) 473-493], Asmussen, Avram and Pistorius [Stochastic Process. Appl. 109 (2004) 79-111] and Chesney and Jeanblanc [Appl. Math. Fin. 11 (2004) 207-225] to the American perpetual put optimal stopping problem. Furthermore, we make folklore precise and give necessary and sufficient conditions for smooth pasting to occur in the considered problem.

Suggested Citation

  • L. Alili & A. E. Kyprianou, 2005. "Some remarks on first passage of Levy processes, the American put and pasting principles," Papers math/0508487,
  • Handle: RePEc:arx:papers:math/0508487

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Ernesto Mordecki, 2002. "Optimal stopping and perpetual options for Lévy processes," Finance and Stochastics, Springer, vol. 6(4), pages 473-493.
    2. Ariel Almendral & Cornelis W. Oosterlee, 2007. "On American Options Under the Variance Gamma Process," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 131-152.
    3. Marc Chesney & M. Jeanblanc, 2004. "Pricing American currency options in an exponential Levy model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(3), pages 207-225.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0508487. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.