IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v139y2022ics0165188922001397.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Directed acyclic graph based information shares for price discovery

Author

Listed:
  • Zema, Sebastiano Michele

Abstract

The possibility to measure the contribution of agents and exchanges to the price formation process in financial markets acquired increasing importance in the literature. In this paper I propose to exploit a data-driven approach to identify structural vector error correction models (SVECM) typically used for price discovery. Exploiting the non-Normal distributions of the variables under consideration, I propose a variant of the widespread Information Share measure, which I will refer to as the Directed Acyclic Graph based-Information Shares(DAG-IS), which can identify the leaders and the followers in the price formation process through the exploitation of a causal discovery algorithm well established in the area of machine learning. The approach will be illustrated from a semi-parametric perspective, solving the identification problem with no need to increase the computational complexity which usually arises when working at incredibly short time scales. Finally, an empirical application on IBM intraday data will be provided.

Suggested Citation

  • Zema, Sebastiano Michele, 2022. "Directed acyclic graph based information shares for price discovery," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:dyncon:v:139:y:2022:i:c:s0165188922001397
    DOI: 10.1016/j.jedc.2022.104434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188922001397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2022.104434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Gouriéroux, Christian & Monfort, Alain & Renne, Jean-Paul, 2017. "Statistical inference for independent component analysis: Application to structural VAR models," Journal of Econometrics, Elsevier, vol. 196(1), pages 111-126.
    3. Frank De Jong & Peter C. Schotman, 2010. "Price Discovery in Fragmented Markets," Journal of Financial Econometrics, Oxford University Press, vol. 8(1), pages 1-28, Winter.
    4. Marcelo Fernandes & Cristina M. Scherrer, 2018. "Price discovery in dual‐class shares across multiple markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 129-155, January.
    5. de Jong, Frank, 2002. "Measures of contributions to price discovery: a comparison," Journal of Financial Markets, Elsevier, vol. 5(3), pages 323-327, July.
    6. Kwangwon Ahn & Yingyao Bi & Sungbin Sohn, 2019. "Price discovery among SSE 50 Index‐based spot, futures, and options markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 238-259, February.
    7. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    8. Kryzanowski, Lawrence & Perrakis, Stylianos & Zhong, Rui, 2017. "Price discovery in equity and CDS markets," Journal of Financial Markets, Elsevier, vol. 35(C), pages 21-46.
    9. Hafner, Christian M. & Herwartz, Helmut & Maxand, Simone, 2022. "Identification of structural multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 227(1), pages 212-227.
    10. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    11. Lanne, Markku & Lütkepohl, Helmut, 2010. "Structural Vector Autoregressions With Nonnormal Residuals," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 159-168.
    12. Gustavo F. Dias & Marcelo Fernandes & Cristina M. Scherrer, 2021. "Price Discovery in a Continuous-Time Setting [Price Discovery and Common Factor Models]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 985-1008.
    13. Hatheway, Frank & Kwan, Amy & Zheng, Hui, 2017. "An Empirical Analysis of Market Segmentation on U.S. Equity Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(6), pages 2399-2427, December.
    14. O'Hara, Maureen & Ye, Mao, 2011. "Is market fragmentation harming market quality?," Journal of Financial Economics, Elsevier, vol. 100(3), pages 459-474, June.
    15. deB. Harris, Frederick H. & McInish, Thomas H. & Wood, Robert A., 2002. "Security price adjustment across exchanges: an investigation of common factor components for Dow stocks," Journal of Financial Markets, Elsevier, vol. 5(3), pages 277-308, July.
    16. G. Geoffrey Booth & Raymond W. So & Yiuman Tse, 1999. "Price discovery in the German equity index derivatives markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(6), pages 619-643, September.
    17. Guidolin, Massimo & Pedio, Manuela & Tosi, Alessandra, 2021. "Time-varying price discovery in sovereign credit markets," Finance Research Letters, Elsevier, vol. 38(C).
    18. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    19. Francesco Audrino, 2005. "The Stability of Factor Models of Interest Rates," Journal of Financial Econometrics, Oxford University Press, vol. 3(3), pages 422-441.
    20. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2017. "Identification and estimation of non-Gaussian structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 196(2), pages 288-304.
    21. Giuseppe Buccheri & Giacomo Bormetti & Fulvio Corsi & Fabrizio Lillo, 2021. "Comment on: Price Discovery in High Resolution," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 439-451.
    22. Putniņš, Tālis J., 2013. "What do price discovery metrics really measure?," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 68-83.
    23. Gonzalo, Jesus & Granger, Clive W J, 1995. "Estimation of Common Long-Memory Components in Cointegrated Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 27-35, January.
    24. Yan, Bingcheng & Zivot, Eric, 2010. "A structural analysis of price discovery measures," Journal of Financial Markets, Elsevier, vol. 13(1), pages 1-19, February.
    25. Guerini, Mattia & Moneta, Alessio, 2017. "A method for agent-based models validation," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 125-141.
    26. Fabozzi, Frank J. & Giacometti, Rosella & Tsuchida, Naoshi, 2016. "Factor decomposition of the Eurozone sovereign CDS spreads," Journal of International Money and Finance, Elsevier, vol. 65(C), pages 1-23.
    27. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    28. Lin, Chu-Bin & Chou, Robin K. & Wang, George H.K., 2018. "Investor sentiment and price discovery: Evidence from the pricing dynamics between the futures and spot markets," Journal of Banking & Finance, Elsevier, vol. 90(C), pages 17-31.
    29. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    30. Donald Lien & Keshab Shrestha, 2009. "A new information share measure," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(4), pages 377-395, April.
    31. Harris, Frederick H. deB. & McInish, Thomas H. & Wood, Robert A., 2002. "Common factor components versus information shares: a reply," Journal of Financial Markets, Elsevier, vol. 5(3), pages 341-348, July.
    32. Joel Hasbrouck, 2021. "Price Discovery in High Resolution," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 395-430.
    33. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    34. Saralees Nadarajah, 2005. "A generalized normal distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 685-694.
    35. Kwan, Amy & Masulis, Ronald & McInish, Thomas H., 2015. "Trading rules, competition for order flow and market fragmentation," Journal of Financial Economics, Elsevier, vol. 115(2), pages 330-348.
    36. Dirk G. Baur & Thomas Dimpfl, 2019. "Price discovery in bitcoin spot or futures?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 803-817, July.
    37. repec:uts:ppaper:2013:2 is not listed on IDEAS
    38. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2019. "Price Discovery without Trading: Evidence from Limit Orders," Journal of Finance, American Finance Association, vol. 74(4), pages 1621-1658, August.
    39. James Brugler & Carole Comerton-Forde, 2021. "Comment on: Price Discovery in High Resolution," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 431-438.
    40. deB. Harris, Frederick H. & McInish, Thomas H. & Shoesmith, Gary L. & Wood, Robert A., 1995. "Cointegration, Error Correction, and Price Discovery on Informationally Linked Security Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(4), pages 563-579, December.
    41. Eric Ghysels, 2021. "Comment on: Price Discovery in High Resolution and the Analysis of Mixed Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 459-464.
    42. Joel Hasbrouck, 2021. "Rejoinder on: Price Discovery in High Resolution," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 465-471.
    43. Christian Gouriéroux & Alain Monfort & Jean-Paul Renne, 2020. "Identification and Estimation in Non-Fundamental Structural VARMA Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(4), pages 1915-1953.
    44. Frank de Jong, 2021. "Comment on: Price Discovery in High Resolution," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 452-458.
    45. Alessio Moneta & Doris Entner & Patrik O. Hoyer & Alex Coad, 2013. "Causal Inference by Independent Component Analysis: Theory and Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(5), pages 705-730, October.
    46. Joel Hasbrouck, 2003. "Intraday Price Formation in U.S. Equity Index Markets," Journal of Finance, American Finance Association, vol. 58(6), pages 2375-2400, December.
    47. Grammig, Joachim & Peter, Franziska J., 2013. "Telltale Tails: A New Approach to Estimating Unique Market Information Shares," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(2), pages 459-488, April.
    48. Hasbrouck, Joel, 1995. "One Security, Many Markets: Determining the Contributions to Price Discovery," Journal of Finance, American Finance Association, vol. 50(4), pages 1175-1199, September.
    49. Lehmann, Bruce N., 2002. "Some desiderata for the measurement of price discovery across markets," Journal of Financial Markets, Elsevier, vol. 5(3), pages 259-276, July.
    50. de Jong, F.C.J.M. & Schotman, P.C., 2010. "Price discovery in fragmented markets," Other publications TiSEM 4650a9e7-c4cf-41cf-a771-e, Tilburg University, School of Economics and Management.
    51. Chen, Yu-Lun & Tsai, Wei-Che, 2017. "Determinants of price discovery in the VIX futures market," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 59-73.
    52. Hasbrouck, Joel, 2002. "Stalking the "efficient price" in market microstructure specifications: an overview," Journal of Financial Markets, Elsevier, vol. 5(3), pages 329-339, July.
    53. Baillie, Richard T. & Geoffrey Booth, G. & Tse, Yiuman & Zabotina, Tatyana, 2002. "Price discovery and common factor models," Journal of Financial Markets, Elsevier, vol. 5(3), pages 309-321, July.
    54. Oliver Entrop & Bart Frijns & Marco Seruset, 2020. "The determinants of price discovery on bitcoin markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(5), pages 816-837, May.
    55. Roberto Blanco & Simon Brennan & Ian W. Marsh, 2005. "An Empirical Analysis of the Dynamic Relation between Investment‐Grade Bonds and Credit Default Swaps," Journal of Finance, American Finance Association, vol. 60(5), pages 2255-2281, October.
    56. Roberto Rigobon, 2003. "Identification Through Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 777-792, November.
    57. Björn Hagströmer & Albert J. Menkveld, 2019. "Information Revelation in Decentralized Markets," Journal of Finance, American Finance Association, vol. 74(6), pages 2751-2787, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moneta, Alessio & Pallante, Gianluca, 2022. "Identification of Structural VAR Models via Independent Component Analysis: A Performance Evaluation Study," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    2. Sebastiano Michele Zema & Francesco Cordoni, 2023. "A non-Normal framework for price discovery: The independent component based information shares measure," LEM Papers Series 2023/03, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastiano Michele Zema, 2020. "Directed Acyclic Graph based Information Shares for Price Discovery," LEM Papers Series 2020/28, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Sebastiano Michele Zema & Francesco Cordoni, 2023. "A non-Normal framework for price discovery: The independent component based information shares measure," LEM Papers Series 2023/03, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Joel Hasbrouck, 2021. "Price Discovery in High Resolution," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 395-430.
    4. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    5. Santos, Francisco Luna & Garcia, Márcio Gomes Pinto & Medeiros, Marcelo Cunha, 2015. "Price Discovery in Brazilian FX Markets," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.
    6. Donald Lien & Zijun Wang, 2016. "Estimation of Market Information Shares: A Comparison," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(11), pages 1108-1124, November.
    7. Hou, Yang & Li, Steven, 2017. "Time-Varying Price Discovery and Autoregressive Loading Factors: Evidence from S&P 500 Cash and E-Mini Futures Markets," MPRA Paper 81999, University Library of Munich, Germany.
    8. Chen, Wei-Peng & Chung, Huimin & Lien, Donald, 2016. "Price discovery in the S&P 500 index derivatives markets," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 438-452.
    9. Bingcheng Yan & Eric Zivot, 2007. "A Structural Analysis of Price Discovery Measures," Working Papers UWEC-2006-08-FC, University of Washington, Department of Economics, revised Apr 2007.
    10. Karsten Schweikert, 2021. "Bootstrap Confidence Intervals and Hypothesis Testing for Market Information Shares [Price Discovery and Common Factor Models]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 934-959.
    11. Corbet, Shaen & Hou, Yang & Hu, Yang & Oxley, Les, 2020. "The influence of the COVID-19 pandemic on asset-price discovery: Testing the case of Chinese informational asymmetry," International Review of Financial Analysis, Elsevier, vol. 72(C).
    12. Christoph Schmidhammer & Sebastian Lobe & Klaus Röder, 2016. "The day the index rose 11 %: a clinical study on price discovery reversal," Review of Quantitative Finance and Accounting, Springer, vol. 46(1), pages 79-106, January.
    13. Dimpfl, Thomas & Schweikert, Karsten, 2023. "Information shares for markets with partially overlapping trading hours," Journal of Banking & Finance, Elsevier, vol. 154(C).
    14. Donald Lien & Zijun Wang, 2019. "Quantile information share," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 38-55, January.
    15. Paolo Pagnottoni & Thomas Dimpfl, 2019. "Price discovery on Bitcoin markets," Digital Finance, Springer, vol. 1(1), pages 139-161, November.
    16. Hou, Yang & Nartea, Gilbert, 2017. "Price Discovery in the Stock Index Futures Market: Evidence from the Chinese stock market crash," MPRA Paper 81995, University Library of Munich, Germany.
    17. Christoph Schmidhammer & Sebastian Lobe & Klaus Röder, 2016. "The day the index rose 11 %: a clinical study on price discovery reversal," Review of Quantitative Finance and Accounting, Springer, vol. 46(1), pages 79-106, January.
    18. Joseph, Kishore & Garcia, Philip & Peterson, Paul E., 2016. "Does the Boxed Beef Price Inform the Live Cattle Futures Price?," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236166, Agricultural and Applied Economics Association.
    19. Kuck, Konstantin & Schweikert, Karsten, 2023. "Price discovery in equity markets: A state-dependent analysis of spot and futures markets," Journal of Banking & Finance, Elsevier, vol. 149(C).
    20. Dirk G. Baur & Thomas Dimpfl, 2019. "Price discovery in bitcoin spot or futures?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 803-817, July.

    More about this item

    Keywords

    Structural VECM; Information shares; Microstructure noise; Independent component analysis; Directed acyclic graphs;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:139:y:2022:i:c:s0165188922001397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.