IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Large time-varying parameter VARs"

by Koop, Gary & Korobilis, Dimitris

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in nonstationary environments: What works and what doesn't in reduced-form and structural models," Economics Working Papers 1476, Department of Economics and Business, Universitat Pompeu Fabra.
  2. Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian Nonparametric Sparse Seemingly Unrelated Regression Model (SUR)," Papers 1608.02740, arXiv.org, revised Dec 2016.
  3. Joseph P. Byrne & Shuo Cao. & Dimitris Korobilis., 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," Working Papers 2015_08, Business School - Economics, University of Glasgow.
  4. Clark, Todd E. & Carriero, Andrea & Marcellino, Massimiliano, 2016. "Large Vector Autoregressions with Stochastic Volatility and Flexible Priors," Working Paper 1617, Federal Reserve Bank of Cleveland.
  5. Laurent Callot & Johannes Tang Kristensen, 2014. "Vector Autoregressions with Parsimoniously Time Varying Parameters and an Application to Monetary Policy," CREATES Research Papers 2014-41, Department of Economics and Business Economics, Aarhus University.
  6. Carriero, Andrea & Mumtaz, Haroon & Theophilopoulou, Angeliki, 2015. "Macroeconomic information, structural change, and the prediction of fiscal aggregates," International Journal of Forecasting, Elsevier, vol. 31(2), pages 325-348.
  7. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
  8. Canova, Fabio & Ciccarelli, Matteo, 2013. "Panel Vector Autoregressive Models: A Survey," CEPR Discussion Papers 9380, C.E.P.R. Discussion Papers.
  9. Petrella, Ivan & Delle Monache, Davide, 2016. "Adaptive models and heavy tails," Bank of England working papers 577, Bank of England.
  10. Gary Koop, 2012. "Using VARs and TVP-VARs with Many Macroeconomic Variables," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 4(3), pages 143-167, September.
  11. Huseynov, Salman & Ahmadov, Vugar & Adigozalov, Shaig, 2014. "Beating a Random Walk: “Hard Times” for Forecasting Inflation in Post-Oil Boom Years?," MPRA Paper 63515, University Library of Munich, Germany.
  12. Delle Monache, & Ivan Petrella & Fabrizio Venditti, 2015. "Common faith or parting ways? A time varying parameters factor analysis of euro-area inflation," Birkbeck Working Papers in Economics and Finance 1515, Birkbeck, Department of Economics, Mathematics & Statistics.
  13. Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Equity Premia using Bayesian Dynamic Model Averaging," CQE Working Papers 2914, Center for Quantitative Economics (CQE), University of Muenster.
  14. Huber, Florian, 2014. "Density Forecasting using Bayesian Global Vector Autoregressions with Common Stochastic Volatility," WU Library - ePub - Series 005 4280, WU Library - ePub.
  15. Eric Eisenstat & Joshua C.C. Chan & Rodney Strachan, 2014. "Stochastic Model Specification Search for Time-Varying Parameter VARs," Working Paper Series 44_14, The Rimini Centre for Economic Analysis.
  16. Luis A. Gil-Alana & Rangan Gupta & Olusanya E. Olubusoye & OlaOluwa S. Yaya, 2015. "Time Series Analysis of Persistence in Crude Oil Price Volatility across Bull and Bear Regimes," Working Papers 201580, University of Pretoria, Department of Economics.
  17. Gary Koop & Dimitris Korobilis, 2013. "A new index of financial conditions," Working Papers 1307, University of Strathclyde Business School, Department of Economics.
  18. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working papers 2012-38, University of Connecticut, Department of Economics, revised Dec 2013.
  19. Miguel, Belmonte & Gary, Koop, 2013. "Model Switching and Model Averaging in Time- Varying Parameter Regression Models," SIRE Discussion Papers 2013-34, Scottish Institute for Research in Economics (SIRE).
  20. Joshua C.C. Chan & Eric Eisenstat, 2015. "Bayesian model comparison for time-varying parameter VARs with stochastic volatility," CAMA Working Papers 2015-32, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  21. Simionescu, Mihaela, 2014. "Bayesian Forecasts Combination To Improve The Romanian Inflation Predictions Based On Econometric Models," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 5(2), pages 131-140.
  22. Aastveit, Knut Are & Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2014. "Have Standard VARs Remained Stable since the Crisis?," Working Paper 1411, Federal Reserve Bank of Cleveland.
  23. Guérin, Pierre & Leiva-Leon, Danilo, 2014. "Model Averaging in Markov-Switching Models: Predicting National Recessions with Regional Data," MPRA Paper 59361, University Library of Munich, Germany.
  24. Abbate, Angela & Marcellino, Massimiliano, 2016. "Point, interval and density forecasts of exchange rates with time-varying parameter models," Discussion Papers 19/2016, Deutsche Bundesbank, Research Centre.
  25. Joshua C.C. Chan, 2015. "Specification tests for time-varying parameter models with stochastic volatility," CAMA Working Papers 2015-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  26. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-71, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  27. Matei, Florin, 2014. "An empirical examination of stock market integration in EMU," MPRA Paper 60717, University Library of Munich, Germany.
  28. Konstantakis, Konstantinos N. & Michaelides, Panayotis G., 2014. "Transmission of the debt crisis: From EU15 to USA or vice versa? A GVAR approach," Journal of Economics and Business, Elsevier, vol. 76(C), pages 115-132.
  29. Byrne, Joseph P & Korobilis, Dimitris & Ribeiro, Pinho J, 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," MPRA Paper 58956, University Library of Munich, Germany.
  30. Korobilis, Dimitris, 2015. "Prior selection for panel vector autoregressions," MPRA Paper 64143, University Library of Munich, Germany.
  31. Didier Nibbering & Richard Paap & Michel van der Wel, 2016. "A Bayesian Infinite Hidden Markov Vector Autoregressive Model," Tinbergen Institute Discussion Papers 16-107/III, Tinbergen Institute.
  32. Franz Ruch & Mehmet Balcilar Author-Name-First Mehmet & Mampho P. Modise & Rangan Gupta, 2015. "Forecasting Core Inflation: The Case of South Africa," Working Papers 15-08, Eastern Mediterranean University, Department of Economics.
  33. Huber Florian, 2016. "Forecasting exchange rates using multivariate threshold models," The B.E. Journal of Macroeconomics, De Gruyter, vol. 16(1), pages 193-210, January.
  34. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 2012/09, Norges Bank.
  35. Tomas Adam & Miroslav Plasil, 2014. "The Impact of Financial Variables on Czech Macroeconomic Developments: An Empirical Investigation," Working Papers 2014/11, Czech National Bank, Research Department.
  36. Delle Monache, Davide & Petrella, Ivan & Venditti, Fabrizio, 2016. "Adaptive state space models with applications to the business cycle and financial stress," CEPR Discussion Papers 11599, C.E.P.R. Discussion Papers.
  37. Dimitris Korobilis, 2014. "Data-based priors for vector autoregressions with drifting coefficients," Working Papers 2014_04, Business School - Economics, University of Glasgow.
  38. Riané de Bruyn & Rangan Gupta & Reneé van Eyden, 2015. "Can We Beat the Random-Walk Model for the South African Rand--U.S. Dollar and South African Rand--UK Pound Exchange Rates? Evidence from Dynamic Model Averaging," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(3), pages 502-524, May.
  39. Roberto Casarin & Daniel Felix Ahelegbey & Monica Billio, 2014. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Working Papers 2014:29, Department of Economics, University of Venice "Ca' Foscari".
  40. Poyesh Bahadori Jahromi & Hojatallah Goudarzi, 2014. "The Study of Co-Integration and Casual Relationship Between Macroeconomic Variables and Insurance Penetration Ratio," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 4(7), pages 853-863, July.
  41. Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014. "Forecasting with the Standardized Self-Perturbed Kalman Filter," Studies in Economics 1405, School of Economics, University of Kent.
  42. Periklis Gogas & Theophilos Papadimitriou & Vasilios Plakandaras & Rangan Gupta, 2015. "The Informational Content of the Term-Spread in Forecasting the U.S. Inflation Rate: A Nonlinear Approach," Working Papers 201548, University of Pretoria, Department of Economics.
  43. Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2012. "Common Drifting Volatility in Large Bayesian VARs," CEPR Discussion Papers 8894, C.E.P.R. Discussion Papers.
  44. Delle Monache, Davide & Petrella, Ivan, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," MPRA Paper 75424, University Library of Munich, Germany.
  45. Emmanuel Owusu-Sekyere, 2016. "The impact of monetary policy on household consumption in South Africa. Evidence from Vector Autoregressive Techniques," Working Papers 598, Economic Research Southern Africa.
  46. Davide Pettenuzzo & Gary Koop & Dimitris Korobilis, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 103R, Brandeis University, Department of Economics and International Businesss School, revised Apr 2016.
  47. Byrne, Joseph P. & Korobilis, Dimitris & Ribeiro, Pinho J., 2014. "On the Sources of Uncertainty in Exchange Rate Predictability," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-24, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  48. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2015. "Was the recent downturn in US real GDP predictable?," Applied Economics, Taylor & Francis Journals, vol. 47(28), pages 2985-3007, June.
  49. Huber, Florian, 2016. "Density forecasting using Bayesian global vector autoregressions with stochastic volatility," International Journal of Forecasting, Elsevier, vol. 32(3), pages 818-837.
  50. Korobilis, Dimitris, 2015. "Prior selection for panel vector autoregressions," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-73, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  51. Buncic, Daniel & Piras, Gion Donat, 2014. "Heterogeneous Agents, the Financial Crisis and Exchange Rate Predictability," Economics Working Paper Series 1436, University of St. Gallen, School of Economics and Political Science, revised Oct 2015.
  52. Alicia N. Rambaldi & Ryan R. J. McAllister & Cameron S. Fletcher, 2015. "Decoupling land values in residential property prices: smoothing methods for hedonic imputed price indices," Discussion Papers Series 549, School of Economics, University of Queensland, Australia.
  53. Joshua C.C. Chan, 2015. "Large Bayesian VARs: A flexible Kronecker error covariance structure," CAMA Working Papers 2015-41, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  54. Joshua C.C. Chan & Eric Eisenstat, 2015. "Efficient estimation of Bayesian VARMAs with time-varying coefficients," CAMA Working Papers 2015-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  55. Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, model selection, and shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.
  56. Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
  57. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
  58. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
  59. Joshua C.C. Chan, 2015. "The Stochastic Volatility in Mean Model with Time-Varying Parameters: An Application to Inflation Modeling," CAMA Working Papers 2015-07, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  60. Pantelis Promponas & David Alan Peel, 2016. "Forecasting the nominal exchange rate movements in a changing world. The case of the U.S. and the U.K," Working Papers 144439514, Lancaster University Management School, Economics Department.
  61. Michele Loberto & Chiara Perricone, 2015. "Does trend inflation make a difference?," Temi di discussione (Economic working papers) 1033, Bank of Italy, Economic Research and International Relations Area.
  62. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Large Vector Autoregressions with Asymmetric Priors," Working Papers 759, Queen Mary University of London, School of Economics and Finance.
  63. Punzi, Maria Teresa, 2016. "Financial cycles and co-movements between the real economy, finance and asset price dynamics in large-scale crises," FinMaP-Working Papers 61, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.