IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v30y2024i13p1470-1489.html
   My bibliography  Save this article

Do social media sentiments drive cryptocurrency intraday price volatility? New evidence from asymmetric TVP-VAR frequency connectedness measures

Author

Listed:
  • Suwan (Cheng) Long
  • Ioannis Chatziantoniou
  • David Gabauer
  • Brian Lucey

Abstract

In this paper, we investigate interdependencies between cryptocurrencies and investor sentiment by introducing the asymmetric TVP-VAR frequency connectedness approach. Our empirical results provide evidence of pronounced and time-varying interconnectedness between sentiment and cryptocurrency. In addition, we find that negative short-term interconnectedness dominates positive short-term interconnectedness until mid-2020 when this effect was reversed, persisting until the end of the sample period. While Ripple and Bitcoin are both found to be the main net transmitters of shocks, Stellar, Ethereum, and NEM are considered net receivers of shocks. Overall, our findings suggest that market sentiment is mainly driven by cryptocurrency volatility in both the short and the long run.

Suggested Citation

  • Suwan (Cheng) Long & Ioannis Chatziantoniou & David Gabauer & Brian Lucey, 2024. "Do social media sentiments drive cryptocurrency intraday price volatility? New evidence from asymmetric TVP-VAR frequency connectedness measures," The European Journal of Finance, Taylor & Francis Journals, vol. 30(13), pages 1470-1489, September.
  • Handle: RePEc:taf:eurjfi:v:30:y:2024:i:13:p:1470-1489
    DOI: 10.1080/1351847X.2024.2314085
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1351847X.2024.2314085
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1351847X.2024.2314085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Abad & Roberto Pascual, 2010. "Switching To A Temporary Call Auction In Times Of High Uncertainty," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(1), pages 45-75, March.
    2. Bart Frijns & Dimitris Margaritis, 2008. "Forecasting daily volatility with intraday data," The European Journal of Finance, Taylor & Francis Journals, vol. 14(6), pages 523-540.
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    5. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    6. Stiassny, Alfred, 1996. "A Spectral Decomposition for Structural VAR Models," Empirical Economics, Springer, vol. 21(4), pages 535-555.
    7. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    8. Gabauer, David, 2021. "Dynamic measures of asymmetric & pairwise connectedness within an optimal currency area: Evidence from the ERM I system," Journal of Multinational Financial Management, Elsevier, vol. 60(C).
    9. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    10. Thomas Renault, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205113, HAL.
    11. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
    12. Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting realized volatility of bitcoin returns: tail events and asymmetric loss," The European Journal of Finance, Taylor & Francis Journals, vol. 27(16), pages 1626-1644, November.
    13. Akanksha Jalan & Roman Matkovskyy & Andrew Urquhart, 2021. "What effect did the introduction of Bitcoin futures have on the Bitcoin spot market?," The European Journal of Finance, Taylor & Francis Journals, vol. 27(13), pages 1251-1281, September.
    14. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    15. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    16. Shen, Dehua & Urquhart, Andrew & Wang, Pengfei, 2019. "Does twitter predict Bitcoin?," Economics Letters, Elsevier, vol. 174(C), pages 118-122.
    17. Jeremy Eng-Tuck Cheah & Di Luo & Zhuang Zhang & Ming-Chien Sung, 2022. "Predictability of bitcoin returns," The European Journal of Finance, Taylor & Francis Journals, vol. 28(1), pages 66-85, January.
    18. Chakrabarty, Bidisha & Corwin, Shane A. & Panayides, Marios A., 2011. "When a halt is not a halt: An analysis of off-NYSE trading during NYSE market closures," Journal of Financial Intermediation, Elsevier, vol. 20(3), pages 361-386, July.
    19. Rognone, Lavinia & Hyde, Stuart & Zhang, S. Sarah, 2020. "News sentiment in the cryptocurrency market: An empirical comparison with Forex," International Review of Financial Analysis, Elsevier, vol. 69(C).
    20. Koop, Gary & Korobilis, Dimitris, 2014. "A new index of financial conditions," European Economic Review, Elsevier, vol. 71(C), pages 101-116.
    21. Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh & Roubaud, David, 2021. "Quantile connectedness in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    22. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    23. Wiesen, Thomas F.P. & Beaumont, Paul M. & Norrbin, Stefan C. & Srivastava, Anuj, 2018. "Are generalized spillover indices overstating connectedness?," Economics Letters, Elsevier, vol. 173(C), pages 131-134.
    24. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    25. Shane A. Corwin & Marc L. Lipson, 2000. "Order Flow and Liquidity around NYSE Trading Halts," Journal of Finance, American Finance Association, vol. 55(4), pages 1771-1801, August.
    26. Naeem, Muhammad Abubakr & Mbarki, Imen & Shahzad, Syed Jawad Hussain, 2021. "Predictive role of online investor sentiment for cryptocurrency market: Evidence from happiness and fears," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 496-514.
    27. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    28. Trimborn, Simon & Härdle, Wolfgang Karl, 2018. "CRIX an Index for cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 107-122.
    29. Borri, Nicola, 2019. "Conditional tail-risk in cryptocurrency markets," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 1-19.
    30. Lee, Charles M C & Ready, Mark J & Seguin, Paul J, 1994. "Volume, Volatility, and New York Stock Exchange Trading Halts," Journal of Finance, American Finance Association, vol. 49(1), pages 183-214, March.
    31. Hautsch, Nikolaus & Horvath, Akos, 2019. "How effective are trading pauses?," Journal of Financial Economics, Elsevier, vol. 131(2), pages 378-403.
    32. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    33. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    34. Ioannis Chatziantoniou & David Gabauer & Rangan Gupta, 2021. "Integration and Risk Transmission in the Market for Crude Oil: A Time-Varying Parameter Frequency Connectedness Approach," Working Papers 202147, University of Pretoria, Department of Economics.
    35. repec:bla:jfinan:v:55:y:2000:i:4:p:1771-1805 is not listed on IDEAS
    36. Chen, Cathy Yi-Hsuan & Després, Roméo & Guo, Li & Renault, Thomas, 2019. "What makes cryptocurrencies special? Investor sentiment and return predictability during the bubble," IRTG 1792 Discussion Papers 2019-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    37. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    38. Bayu Adi Nugroho, 2021. "Spillovers and bivariate portfolios of gold-backed cryptocurrencies and gold during the COVID-19 outbreak," Journal of Islamic Accounting and Business Research, Emerald Group Publishing Limited, vol. 12(7), pages 1055-1076, August.
    39. Mensi, Walid & Al-Yahyaee, Khamis Hamed & Kang, Sang Hoon, 2019. "Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from Bitcoin and Ethereum," Finance Research Letters, Elsevier, vol. 29(C), pages 222-230.
    40. William G. Christie & Shane A. Corwin & Jeffrey H. Harris, 2002. "Nasdaq Trading Halts: The Impact of Market Mechanisms on Prices, Trading Activity, and Execution Costs," Journal of Finance, American Finance Association, vol. 57(3), pages 1443-1478, June.
    41. Gurdgiev, Constantin & O'Loughlin, Daniel & CHLEBOWSKI, BARTOSZ, 2019. "Behavioral Basis Of Cryptocurrencies Markets : Examining Effects Of Public Sentiment, Fear, And Uncertainty On Price Formation," Journal of Financial Transformation, Capco Institute, vol. 49, pages 110-121.
    42. Goldstein, Michael A. & Kavajecz, Kenneth A., 2004. "Trading strategies during circuit breakers and extreme market movements," Journal of Financial Markets, Elsevier, vol. 7(3), pages 301-333, June.
    43. Gabauer, David & Gupta, Rangan, 2018. "On the transmission mechanism of country-specific and international economic uncertainty spillovers: Evidence from a TVP-VAR connectedness decomposition approach," Economics Letters, Elsevier, vol. 171(C), pages 63-71.
    44. Brown, Gregory W. & Cliff, Michael T., 2004. "Investor sentiment and the near-term stock market," Journal of Empirical Finance, Elsevier, vol. 11(1), pages 1-27, January.
    45. Xinyu Huang & Weihao Han & David Newton & Emmanouil Platanakis & Dimitrios Stafylas & Charles Sutcliffe, 2023. "The diversification benefits of cryptocurrency asset categories and estimation risk: pre and post Covid-19," The European Journal of Finance, Taylor & Francis Journals, vol. 29(7), pages 800-825, May.
    46. Ji, Qiang & Bouri, Elie & Lau, Chi Keung Marco & Roubaud, David, 2019. "Dynamic connectedness and integration in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 257-272.
    47. Corbet, Shaen & Lucey, Brian & Peat, Maurice & Vigne, Samuel, 2018. "Bitcoin Futures—What use are they?," Economics Letters, Elsevier, vol. 172(C), pages 23-27.
    48. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    49. Thomas J. Fisher & Colin M. Gallagher, 2012. "New Weighted Portmanteau Statistics for Time Series Goodness of Fit Testing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 777-787, June.
    50. Fan Fang & Waichung Chung & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & Fan Wu, 2024. "Ascertaining price formation in cryptocurrency markets with machine learning," The European Journal of Finance, Taylor & Francis Journals, vol. 30(1), pages 78-100, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stenfors, Alexis & Chatziantoniou, Ioannis & Gabauer, David, 2022. "Independent policy, dependent outcomes: A game of cross-country dominoes across European yield curves," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    2. Elie Bouri & Mahdi Ghaemi Asl & Sahar Darehshiri & David Gabauer, 2024. "Asymmetric connectedness between conventional and Islamic cryptocurrencies: Evidence from good and bad volatility spillovers," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-26, December.
    3. Chatziantoniou, Ioannis & Gabauer, David & Gupta, Rangan, 2023. "Integration and risk transmission in the market for crude oil: New evidence from a time-varying parameter frequency connectedness approach," Resources Policy, Elsevier, vol. 84(C).
    4. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    5. Abakah, Emmanuel Joel Aikins & Brahim, Mariem & Carlotti, Jean-Etienne & Tiwari, Aviral Kumar & Mensi, Walid, 2024. "Extreme downside risk connectedness and portfolio hedging among the G10 currencies," International Economics, Elsevier, vol. 178(C).
    6. Chatziantoniou, Ioannis & Gabauer, David & Stenfors, Alexis, 2020. "From CIP-deviations to a market for risk premia: A dynamic investigation of cross-currency basis swaps," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 69(C).
    7. David Gabauer, 2020. "Volatility impulse response analysis for DCC‐GARCH models: The role of volatility transmission mechanisms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 788-796, August.
    8. Ioannis Chatziantoniou & David Gabauer & Rangan Gupta, 2021. "Integration and Risk Transmission in the Market for Crude Oil: A Time-Varying Parameter Frequency Connectedness Approach," Working Papers 202147, University of Pretoria, Department of Economics.
    9. Ioannis Chatziantoniou & David Gabauer & Hardik A. Marfatia, 2022. "Dynamic connectedness and spillovers across sectors: Evidence from the Indian stock market," Scottish Journal of Political Economy, Scottish Economic Society, vol. 69(3), pages 283-300, July.
    10. Dang, Tam Hoang Nhat & Balli, Faruk & Balli, Hatice Ozer & Gabauer, David & Nguyen, Thi Thu Ha, 2024. "Sectoral uncertainty spillovers in emerging markets: A quantile time–frequency connectedness approach," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 121-139.
    11. Bouri, Elie & Cepni, Oguzhan & Gabauer, David & Gupta, Rangan, 2021. "Return connectedness across asset classes around the COVID-19 outbreak," International Review of Financial Analysis, Elsevier, vol. 73(C).
    12. Abubakr Naeem, Muhammad & Iqbal, Najaf & Lucey, Brian M. & Karim, Sitara, 2022. "Good versus bad information transmission in the cryptocurrency market: Evidence from high-frequency data," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    13. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    14. Toan Luu Duc Huynh, 2023. "When Elon Musk Changes his Tone, Does Bitcoin Adjust Its Tune?," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 639-661, August.
    15. Erdinc Akyildirim & Ahmet Faruk Aysan & Oguzhan Cepni & Özge Serbest, 2024. "Sentiment matters: the effect of news-media on spillovers among cryptocurrency returns," The European Journal of Finance, Taylor & Francis Journals, vol. 30(14), pages 1577-1613, September.
    16. Le, Trung H. & Pham, Linh & Do, Hung X., 2023. "Price risk transmissions in the water-energy-food nexus: Impacts of climate risks and portfolio implications," Energy Economics, Elsevier, vol. 124(C).
    17. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2021. "The impact of Euro through time: Exchange rate dynamics under different regimes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1375-1408, January.
    18. Antonakakis, Nikolaos & Gabauer, David & Gupta, Rangan, 2019. "Greek economic policy uncertainty: Does it matter for Europe? Evidence from a dynamic connectedness decomposition approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    19. Antonakakis, Nikolaos & Gabauer, David & Gupta, Rangan, 2019. "International monetary policy spillovers: Evidence from a time-varying parameter vector autoregression," International Review of Financial Analysis, Elsevier, vol. 65(C).
    20. Juncal Cunado & David Gabauer & Rangan Gupta & Chien-Chiang Lee, 2025. "On the propagation mechanism of international real interest rate spillovers: evidence from more than 200 years of data," Applied Economics, Taylor & Francis Journals, vol. 57(7), pages 790-804, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:30:y:2024:i:13:p:1470-1489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.