IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

New Weighted Portmanteau Statistics for Time Series Goodness of Fit Testing

  • Thomas J. Fisher
  • Colin M. Gallagher
Registered author(s):

    We exploit ideas from high-dimensional data analysis to derive new portmanteau tests that are based on the trace of the square of the m th order autocorrelation matrix. The resulting statistics are weighted sums of the squares of the sample autocorrelation coefficients that, unlike many other tests appearing in the literature, are numerically stable even when the number of lags considered is relatively close to the sample size. The statistics behave asymptotically as a linear combination of chi-squared random variables and their asymptotic distribution can be approximated by a gamma distribution. The proposed tests are modified to check for nonlinearity and to check the adequacy of a fitted nonlinear model. Simulation evidence indicates that the proposed goodness of fit tests tend to have higher power than other tests appearing in the literature, particularly in detecting long-memory nonlinear models. The efficacy of the proposed methods is demonstrated by investigating nonlinear effects in Apple, Inc., and Nikkei-300 daily returns during the 2006--2007 calendar years. The supplementary materials for this article are available online.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1080/01621459.2012.688465
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 498 (June)
    Pages: 777-787

    as
    in new window

    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:777-787
    Contact details of provider: Web page: http://www.tandfonline.com/UASA20

    Order Information: Web: http://www.tandfonline.com/pricing/journal/UASA20

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:498:p:777-787. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.