IDEAS home Printed from https://ideas.repec.org/a/taf/eurjfi/v27y2021i16p1626-1644.html
   My bibliography  Save this article

Forecasting realized volatility of bitcoin returns: tail events and asymmetric loss

Author

Listed:
  • Konstantinos Gkillas
  • Rangan Gupta
  • Christian Pierdzioch

Abstract

We use intraday data to construct measures of the realized volatility of bitcoin returns. We then construct measures that focus exclusively on relatively large realizations of returns to assess the tail shape of the return distribution, and use the heterogeneous autoregressive realized volatility (HAR-RV) model to study whether these measures help to forecast subsequent realized volatility. We find that mainly forecasters suffering a higher loss in case of an underprediction of realized volatility (than in case of an overprediction of the same absolute size) benefit from using the tail measures as predictors of realized volatility, especially at a short and intermediate forecast horizon. This result is robust controlling for jumps and realized skewness and kurtosis, and it also applies to downside (bad) and upside (good) realized volatility.

Suggested Citation

  • Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting realized volatility of bitcoin returns: tail events and asymmetric loss," The European Journal of Finance, Taylor & Francis Journals, vol. 27(16), pages 1626-1644, November.
  • Handle: RePEc:taf:eurjfi:v:27:y:2021:i:16:p:1626-1644
    DOI: 10.1080/1351847X.2021.1906728
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1351847X.2021.1906728
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1351847X.2021.1906728?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
    2. Sapkota, Niranjan, 2022. "News-based sentiment and bitcoin volatility," International Review of Financial Analysis, Elsevier, vol. 82(C).
    3. Konstantinos Gkillas & Christoforos Konstantatos & Costas Siriopoulos, 2021. "Uncertainty Due to Infectious Diseases and Stock–Bond Correlation," Econometrics, MDPI, vol. 9(2), pages 1-18, April.
    4. Muhammad Ikhlas Rosele & Abdul Muneem & Azizi Bin Che Seman & Luqman Bin Haji Abdullah & Noor Naemah Binti Abdul Rahman & Mohd Edil Bin Abd Sukor & Abdul Karim Bin Ali, 2022. "The Concept of Wealth (mÄ l) in the SharÄ«Ê¿ah and Its Relation to Digital Assets," SAGE Open, , vol. 12(2), pages 21582440221, June.
    5. Mehmet Balcilar & David Gabauer & Rangan Gupta & Christian Pierdzioch, 2022. "Uncertainty and forecastability of regional output growth in the UK: Evidence from machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1049-1064, September.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:eurjfi:v:27:y:2021:i:16:p:1626-1644. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.tandfonline.com/REJF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/REJF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.