IDEAS home Printed from https://ideas.repec.org/p/fip/fedcwp/1811.html
   My bibliography  Save this paper

A Class of Time-Varying Parameter Structural VARs for Inference under Exact or Set Identification

Author

Listed:
  • Mark Bognanni

Abstract

This paper develops a new class of structural vector autoregressions (SVARs) with time-varying parameters, which I call a drifting SVAR (DSVAR). The DSVAR is the first structural time-varying parameter model to allow for internally consistent probabilistic inference under exact?or set?identification, nesting the widely used SVAR framework as a special case. I prove that the DSVAR implies a reduced-form representation, from which structural inference can proceed similarly to the widely used two-step approach for SVARs: beginning with estimation of a reduced form and then choosing among observationally equivalent candidate structural parameters via the imposition of identifying restrictions. In a special case, the implied reduced form is a tractable known model for which I provide the first algorithm for Bayesian estimation of all free parameters. I demonstrate the framework in the context of Baumeister and Peersman?s (2013b) work on time variation in the elasticity of oil demand.

Suggested Citation

  • Mark Bognanni, 2018. "A Class of Time-Varying Parameter Structural VARs for Inference under Exact or Set Identification," Working Papers (Old Series) 1811, Federal Reserve Bank of Cleveland, revised 11 Sep 2018.
  • Handle: RePEc:fip:fedcwp:1811
    DOI: 10.26509/frbc-wp-201811
    as

    Download full text from publisher

    File URL: https://doi.org/10.26509/frbc-wp-201811
    File Function: Full text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Uhlig, Harald, 2005. "What are the effects of monetary policy on output? Results from an agnostic identification procedure," Journal of Monetary Economics, Elsevier, vol. 52(2), pages 381-419, March.
    2. Andrew Mountford & Harald Uhlig, 2009. "What are the effects of fiscal policy shocks?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(6), pages 960-992.
    3. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    4. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    5. Canova, Fabio & Gambetti, Luca, 2009. "Structural changes in the US economy: Is there a role for monetary policy?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 477-490, February.
    6. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-591, May.
    7. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    8. Hofmann, Boris & Peersman, Gert & Straub, Roland, 2012. "Time variation in U.S. wage dynamics," Journal of Monetary Economics, Elsevier, vol. 59(8), pages 769-783.
    9. Jonas E. Arias & Juan F. Rubio‐Ramírez & Daniel F. Waggoner, 2018. "Inference Based on Structural Vector Autoregressions Identified With Sign and Zero Restrictions: Theory and Applications," Econometrica, Econometric Society, vol. 86(2), pages 685-720, March.
    10. Harald Uhlig, 1997. "Bayesian Vector Autoregressions with Stochastic Volatility," Econometrica, Econometric Society, vol. 65(1), pages 59-74, January.
    11. Christiane Baumeister & Luca Benati, 2013. "Unconventional Monetary Policy and the Great Recession: Estimating the Macroeconomic Effects of a Spread Compression at the Zero Lower Bound," International Journal of Central Banking, International Journal of Central Banking, vol. 9(2), pages 165-212, June.
    12. Christiane Baumeister & James D. Hamilton, 2015. "Sign Restrictions, Structural Vector Autoregressions, and Useful Prior Information," Econometrica, Econometric Society, vol. 83(5), pages 1963-1999, September.
    13. Todd E. Clark & Francesco Ravazzolo, 2015. "Macroeconomic Forecasting Performance under Alternative Specifications of Time‐Varying Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 551-575, June.
    14. Arjun K. Gupta & Daya K. Nagar, 2000. "Matrix-variate beta distribution," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 24, pages 1-11, January.
    15. Marco Del Negro & Giorgio E. Primiceri, 2015. "Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum," Review of Economic Studies, Oxford University Press, vol. 82(4), pages 1342-1345.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Liu & Christian Matthes & Katerina Petrova & Jessica Sackett Romero, 2019. "Monetary Policy across Space and Time," Richmond Fed Economic Brief, Federal Reserve Bank of Richmond.

    More about this item

    Keywords

    structural vector autoregressions; stochastic volatility; Gibbs sampling; time-varying parameters; Bayesian inference;

    JEL classification:

    • E5 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • E4 - Macroeconomics and Monetary Economics - - Money and Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedcwp:1811. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (4D Library). General contact details of provider: http://edirc.repec.org/data/frbclus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.