IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v230y2023ics0165176523002720.html
   My bibliography  Save this article

Estimating the ordering of variables in a VAR using a Plackett–Luce prior

Author

Listed:
  • Wu, Ping
  • Koop, Gary

Abstract

Estimating Bayesian Vector Autoregressions (VARs) involving the Cholesky decomposition is sensitive to the ordering of variables. We treat the ordering as unknown, develop a prior over variable orderings and Markov Chain Monte Carlo (MCMC) methods for posterior sampling over orderings.

Suggested Citation

  • Wu, Ping & Koop, Gary, 2023. "Estimating the ordering of variables in a VAR using a Plackett–Luce prior," Economics Letters, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:ecolet:v:230:y:2023:i:c:s0165176523002720
    DOI: 10.1016/j.econlet.2023.111247
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176523002720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2023.111247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joshua C. C. Chan & Gary Koop & Xuewen Yu, 2024. "Large Order-Invariant Bayesian VARs with Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 825-837, April.
    2. Raffaella Giacomini & Toru Kitagawa & Alessio Volpicella, 2022. "Uncertain identification," Quantitative Economics, Econometric Society, vol. 13(1), pages 95-123, January.
    3. Dominik Bertsche & Robin Braun, 2022. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 328-341, January.
    4. Arias, Jonas E. & Rubio-Ramírez, Juan F. & Shin, Minchul, 2023. "Macroeconomic forecasting and variable ordering in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1054-1086.
    5. Ping Wu & Gary Koop, 2022. "Fast, Order-Invariant Bayesian Inference in VARs using the Eigendecomposition of the Error Covariance Matrix," Working Papers 2310, University of Strathclyde Business School, Department of Economics.
    6. Bruno P. C. Levy & Hedibert F. Lopes, 2021. "Dynamic Ordering Learning in Multivariate Forecasting," Papers 2101.04164, arXiv.org, revised Nov 2021.
    7. Mark Bognanni, 2018. "A Class of Time-Varying Parameter Structural VARs for Inference under Exact or Set Identification," Working Papers (Old Series) 1811, Federal Reserve Bank of Cleveland.
    8. R. L. Plackett, 1975. "The Analysis of Permutations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 24(2), pages 193-202, June.
    9. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua Chan & Eric Eisenstat & Xuewen Yu, 2022. "Large Bayesian VARs with Factor Stochastic Volatility: Identification, Order Invariance and Structural Analysis," Papers 2207.03988, arXiv.org.
    2. Chan, Joshua C.C. & Yu, Xuewen, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    3. Arias, Jonas E. & Rubio-Ramírez, Juan F. & Shin, Minchul, 2023. "Macroeconomic forecasting and variable ordering in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1054-1086.
    4. Joshua C. C. Chan & Gary Koop & Xuewen Yu, 2024. "Large Order-Invariant Bayesian VARs with Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 825-837, April.
    5. Lukas Berend & Jan Pruser, 2024. "The Transmission of Monetary Policy via Common Cycles in the Euro Area," Papers 2410.05741, arXiv.org, revised Nov 2024.
    6. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    7. Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
    8. Helmut Lutkepohl & Fei Shang & Luis Uzeda & Tomasz Wo'zniak, 2024. "Partial Identification of Heteroskedastic Structural VARs: Theory and Bayesian Inference," Papers 2404.11057, arXiv.org.
    9. Braun, Robin, 2021. "The importance of supply and demand for oil prices: evidence from non-Gaussianity," Bank of England working papers 957, Bank of England.
    10. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2021. "Using time-varying volatility for identification in Vector Autoregressions: An application to endogenous uncertainty," Journal of Econometrics, Elsevier, vol. 225(1), pages 47-73.
    11. Luis Gruber & Gregor Kastner, 2022. "Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!," Papers 2206.04902, arXiv.org, revised Nov 2024.
    12. Christis Katsouris, 2023. "Structural Analysis of Vector Autoregressive Models," Papers 2312.06402, arXiv.org, revised Feb 2024.
    13. Ping Wu & Gary Koop, 2022. "Fast, Order-Invariant Bayesian Inference in VARs using the Eigendecomposition of the Error Covariance Matrix," Working Papers 2310, University of Strathclyde Business School, Department of Economics.
    14. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    15. Prüser, Jan & Blagov, Boris, 2022. "Improving inference and forecasting in VAR models using cross-sectional information," Ruhr Economic Papers 960, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    16. Florian Huber & Gary Koop & Massimiliano Marcellino & Tobias Scheckel, 2024. "Bayesian modelling of VAR precision matrices using stochastic block networks," Papers 2407.16349, arXiv.org.
    17. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    18. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    19. Demetrescu, Matei & Salish, Nazarii, 2024. "(Structural) VAR models with ignored changes in mean and volatility," International Journal of Forecasting, Elsevier, vol. 40(2), pages 840-854.
    20. Baker, Rose D. & McHale, Ian G., 2014. "A dynamic paired comparisons model: Who is the greatest tennis player?," European Journal of Operational Research, Elsevier, vol. 236(2), pages 677-684.

    More about this item

    Keywords

    Variables ordering; Plackett–Luce model;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:230:y:2023:i:c:s0165176523002720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.