IDEAS home Printed from https://ideas.repec.org/p/cbo/wpaper/59629.html
   My bibliography  Save this paper

Conditional Forecasting With a Bayesian Vector Autoregression: Working Paper 2023-08

Author

Listed:
  • Byoung Hark Yoo

Abstract

This paper describes how the Congressional Budget Office uses a Bayesian vector autoregression (BVAR) method to generate alternative economic projections to the agency’s baseline. The BVAR includes a wide range of key economic variables that are needed to approximate budget outcomes. Its estimation methods avoid overfitting, a situation in which a model fits historical data well while having a poor ability to project future values.Given targets of future values of some variables such as inflation, the BVAR generates economic projections consistent with

Suggested Citation

  • Byoung Hark Yoo, 2023. "Conditional Forecasting With a Bayesian Vector Autoregression: Working Paper 2023-08," Working Papers 59629, Congressional Budget Office.
  • Handle: RePEc:cbo:wpaper:59629
    as

    Download full text from publisher

    File URL: https://www.cbo.gov/system/files/2023-11/59629-BVAR.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michele Lenza & Giorgio E. Primiceri, 2022. "How to estimate a vector autoregression after March 2020," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 688-699, June.
    2. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    3. Christopher A. Sims & Tao Zha, 2006. "Were There Regime Switches in U.S. Monetary Policy?," American Economic Review, American Economic Association, vol. 96(1), pages 54-81, March.
    4. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    5. Antolín-Díaz, Juan & Petrella, Ivan & Rubio-Ramírez, Juan F., 2021. "Structural scenario analysis with SVARs," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 798-815.
    6. Angelini, Elena & Lalik, Magdalena & Lenza, Michele & Paredes, Joan, 2019. "Mind the gap: A multi-country BVAR benchmark for the Eurosystem projections," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1658-1668.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pagliari, Maria Sole, 2024. "Does one (unconventional) size fit all? Effects of the ECB’s unconventional monetary policies on the euro area economies," European Economic Review, Elsevier, vol. 168(C).
    2. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    3. Ganics, Gergely & Odendahl, Florens, 2021. "Bayesian VAR forecasts, survey information, and structural change in the euro area," International Journal of Forecasting, Elsevier, vol. 37(2), pages 971-999.
    4. Sokol, Andrej, 2025. "Fan charts 2.0: Flexible forecast distributions with expert judgement," International Journal of Forecasting, Elsevier, vol. 41(3), pages 1148-1164.
    5. Antonio M. Conti & Andrea Nobili & Federico M. Signoretti, 2018. "Bank capital constraints, lending supply and economic activity," Temi di discussione (Economic working papers) 1199, Bank of Italy, Economic Research and International Relations Area.
    6. Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2023. "Bayesian Modeling of Time-Varying Parameters Using Regression Trees," Working Papers 23-05, Federal Reserve Bank of Cleveland.
    7. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Discussion Papers in Economics 19/05, Division of Economics, School of Business, University of Leicester.
    8. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    9. Richard K. Crump & Stefano Eusepi & Domenico Giannone & Eric Qian & Argia M. Sbordone, 2021. "A Large Bayesian VAR of the United States Economy," Staff Reports 976, Federal Reserve Bank of New York.
    10. Canova, Fabio & Ciccarelli, Matteo, 2013. "Panel vector autoregressive models: a survey," Working Paper Series 1507, European Central Bank.
    11. Gary Koop, 2012. "Using VARs and TVP-VARs with Many Macroeconomic Variables," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(3), pages 143-167, September.
    12. Michael W. McCracken & Joseph T. McGillicuddy & Michael T. Owyang, 2022. "Binary Conditional Forecasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1246-1258, June.
    13. Francesco Bianchi & Giovanni Nicolo & Dongho Song, 2023. "Inflation and Real Activity over the Business Cycle," Finance and Economics Discussion Series 2023-038, Board of Governors of the Federal Reserve System (U.S.).
    14. Pestova, Anna & Mamonov, Mikhail, 2019. "Should we care? : The economic effects of financial sanctions on the Russian economy," BOFIT Discussion Papers 13/2019, Bank of Finland, Institute for Economies in Transition.
    15. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    16. Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.
    17. Jochen Güntner & Magnus Reif & Maik Wolters, 2024. "Sudden stop: Supply and demand shocks in the German natural gas market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1282-1300, November.
    18. Gregor Kastner & Florian Huber, 2020. "Sparse Bayesian vector autoregressions in huge dimensions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
    19. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    20. Afanasyeva, Elena & Jerow, Sam & Lee, Seung Jung & Modugno, Michele, 2024. "Sowing the seeds of financial imbalances: The role of macroeconomic performance," Journal of Financial Stability, Elsevier, vol. 74(C).

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbo:wpaper:59629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cbogvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.