IDEAS home Printed from https://ideas.repec.org/r/eee/envchp/1-11.html
   My bibliography  Save this item

Chapter 11 Technological change and the environment

In: Handbook of Environmental Economics

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Pan, Haoran, 2006. "Dynamic and endogenous change of input-output structure with specific layers of technology," Structural Change and Economic Dynamics, Elsevier, vol. 17(2), pages 200-223, June.
  2. Cantono, Simona, 2012. "Unveiling diffusion dynamics: an autocatalytic percolation model of environmental innovation diffusion and the optimal dynamic path of adoption subsidies," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201222, University of Turin.
  3. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
  4. Ye, Fanglin & Paulson, Nicholas & Khanna, Madhu, 2022. "Are renewable energy policies effective to promote technological change? The role of induced technological risk," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
  5. Valeria Costantini & Francesco Crespi, 2013. "Public policies for a sustainable energy sector: regulation, diversity and fostering of innovation," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 401-429, April.
  6. Hallegatte, Stephane & Heal, Geoffrey & Fay, Marianne & Treguer, David, 2011. "From growth to green growth -- a framework," Policy Research Working Paper Series 5872, The World Bank.
  7. Yamamoto, Yoshihiro, 2015. "Opinion leadership and willingness to pay for residential photovoltaic systems," Energy Policy, Elsevier, vol. 83(C), pages 185-192.
  8. Fischer, Carolyn, 2008. "Emissions pricing, spillovers, and public investment in environmentally friendly technologies," Energy Economics, Elsevier, vol. 30(2), pages 487-502, March.
  9. Jaraitė, Jūratė & Di Maria, Corrado, 2012. "Efficiency, productivity and environmental policy: A case study of power generation in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1557-1568.
  10. Lamperti, Francesco & Napoletano, Mauro & Roventini, Andrea, 2020. "Green Transitions And The Prevention Of Environmental Disasters: Market-Based Vs. Command-And-Control Policies," Macroeconomic Dynamics, Cambridge University Press, vol. 24(7), pages 1861-1880, October.
  11. Carrión-Flores, Carmen E. & Innes, Robert, 2010. "Environmental innovation and environmental performance," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 27-42, January.
  12. Kumar, Surender & Managi, Shunsuke, 2010. "Sulfur dioxide allowances: Trading and technological progress," Ecological Economics, Elsevier, vol. 69(3), pages 623-631, January.
  13. Sengupta Aditi, 2010. "Environmental Regulation and Industry Dynamics," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-29, June.
  14. Söderholm, Patrik & Tilton, John E., 2012. "Material efficiency: An economic perspective," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 75-82.
  15. De Cian, Enrica & Tavoni, Massimo, 2012. "Do technology externalities justify restrictions on emission permit trading?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 624-646.
  16. Kolstad, Charles D. & Toman, Michael, 2005. "The Economics of Climate Policy," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 30, pages 1561-1618, Elsevier.
  17. Majumdar, Devleena & Kar, Saibal, 2017. "Does technology diffusion help to reduce emission intensity? Evidence from organized manufacturing and agriculture in India," Resource and Energy Economics, Elsevier, vol. 48(C), pages 30-41.
  18. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
  19. Takahiko Kiso, 2019. "Environmental Policy and Induced Technological Change: Evidence from Automobile Fuel Economy Regulations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 785-810, October.
  20. D’Amato, Alessio & Dijkstra, Bouwe R., 2015. "Technology choice and environmental regulation under asymmetric information," Resource and Energy Economics, Elsevier, vol. 41(C), pages 224-247.
  21. Ximin (Natalie) Huang & Tarkan Tan & L. Beril Toktay, 2021. "Carbon Leakage: The Impact of Asymmetric Regulation on Carbon‐Emitting Production," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1886-1903, June.
  22. Bibas, Ruben & Méjean, Aurélie & Hamdi-Cherif, Meriem, 2015. "Energy efficiency policies and the timing of action: An assessment of climate mitigation costs," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 137-152.
  23. Guarini, Giulio & da Costa Oreiro, José Luis, 2023. "Ecological transition and structural change: A new-developmentalist analysis," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
  24. Gagelmann, Frank, 2003. "E.T. and innovation - science fiction or reality? An assessment of the impact of emissions trading on innovation," UFZ Discussion Papers 13/2003, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
  25. Galina Besstremyannaya & Richard Dasher & Sergei Golovan, 2017. "Technological change, energy, environment and economic growth in Japan," Working Papers w0245, Center for Economic and Financial Research (CEFIR).
  26. George van Leeuwen & Pierre Mohnen, 2017. "Revisiting the Porter hypothesis: an empirical analysis of Green innovation for the Netherlands," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(1-2), pages 63-77, February.
  27. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
  28. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
  29. Yang, Yuan & Cai, Wenjia & Wang, Can, 2014. "Industrial CO2 intensity, indigenous innovation and R&D spillovers in China’s provinces," Applied Energy, Elsevier, vol. 131(C), pages 117-127.
  30. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
  31. Alex Bowen, 2014. "Green growth," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 15, pages 237-251, Edward Elgar Publishing.
  32. Vona, Francesco & Patriarca, Fabrizio, 2011. "Income inequality and the development of environmental technologies," Ecological Economics, Elsevier, vol. 70(11), pages 2201-2213, September.
  33. Arfaoui, Nabila & Brouillat, Eric & Saint Jean, Maïder, 2014. "Policy design and technological substitution: Investigating the REACH regulation in an agent-based model," Ecological Economics, Elsevier, vol. 107(C), pages 347-365.
  34. Li, Jia & Just, Richard E., 2018. "Modeling household energy consumption and adoption of energy efficient technology," Energy Economics, Elsevier, vol. 72(C), pages 404-415.
  35. Sen, Suphi, 2015. "Corporate governance, environmental regulations, and technological change," European Economic Review, Elsevier, vol. 80(C), pages 36-61.
  36. Patricia Laurens & Christian Bas & Antoine Schoen & Stéphane Lhuillery, 2016. "Technological contribution of MNEs to the growth of energy-greentech sector in the early post-Kyoto period," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(2), pages 169-191, April.
  37. Kleftodimos, Georgios & Gallai, Nicola & Rozakis, Stelios & Képhaliacos, Charilaos, 2021. "A farm-level ecological-economic approach of the inclusion of pollination services in arable crop farms," Land Use Policy, Elsevier, vol. 107(C).
  38. Lori Bennear & Robert Stavins, 2007. "Second-best theory and the use of multiple policy instruments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 111-129, May.
  39. Wenzel, Lars & Wolf, André, 2013. "Protection against major catastrophes: An economic perspective," HWWI Research Papers 137, Hamburg Institute of International Economics (HWWI).
  40. Raphael Calel, 2020. "Adopt or Innovate: Understanding Technological Responses to Cap-and-Trade," American Economic Journal: Economic Policy, American Economic Association, vol. 12(3), pages 170-201, August.
  41. Giacomo Marangoni & Massimo Tavoni, 2014. "The Clean Energy R&D Strategy For 2°C," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-23.
  42. repec:hal:spmain:info:hdl:2441/14g286e42n8bl9is6h16b18kes is not listed on IDEAS
  43. Alp, Osman & Tan, Tarkan & Udenio, Maximiliano, 2022. "Transitioning to sustainable freight transportation by integrating fleet replacement and charging infrastructure decisions," Omega, Elsevier, vol. 109(C).
  44. Srinivasan, Suchita, 2019. "The light at the end of the tunnel: Impact of policy on the global diffusion of fluorescent lamps," Energy Policy, Elsevier, vol. 128(C), pages 907-918.
  45. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
  46. Stavins, Robert N. & Jaffe, Judson & Schatzki, Todd, 2007. "Too Good to Be True? Three Economic Assessments of California Climate Change Policy," RFF Working Paper Series dp-07-12, Resources for the Future.
  47. Caparrós, Alejandro & Péreau, Jean-Christophe & Tazdaït, Tarik, 2013. "Emission trading and international competition: The impact of labor market rigidity on technology adoption and output," Energy Policy, Elsevier, vol. 55(C), pages 36-43.
  48. Rania Mabrouk & Oliwia Kurtyka, 2020. "Strategic use of environmental innovation in vertical chains and regulatory attitudes," Working Papers hal-03081146, HAL.
  49. Karp, Larry, 2006. "Multiplicity of investment equilibria when pollution permits are not tradable," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt53s4p5wf, Department of Agricultural & Resource Economics, UC Berkeley.
  50. Janine De Fence & Nick Hanley & Karen Turner, 2009. "Do Productivity Improvements Move Us Along the Environmental Kuznets Curve?," Working Papers 0908, University of Strathclyde Business School, Department of Economics.
  51. Francesco Vona & Francesco Nicolli & Lionel Nesta, 2012. "Determinants of renewable energy innovation: environmental policies vs. market regulation," Sciences Po publications 2012-05, Sciences Po.
  52. Nabila Arfaoui & Eric Brouillat & Maïder Saint Jean, 2015. "Credibility of the REACH Regulation: Lessons Drawn from an ABM. WWWforEurope Working Paper No. 92," WIFO Studies, WIFO, number 58133, April.
  53. Nicolli, Francesco & Vona, Francesco, 2016. "Heterogeneous policies, heterogeneous technologies: The case of renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 190-204.
  54. Esfandiar Maasoumi & Almas Heshmati & Inhee Lee, 2021. "Green innovations and patenting renewable energy technologies," Empirical Economics, Springer, vol. 60(1), pages 513-538, January.
  55. Smirnova, Olga & Strumsky, Deborah & Qualls, Ashley C., 2021. "Do federal regulations beget innovation? Legislative policy and the role of executive orders," Energy Policy, Elsevier, vol. 158(C).
  56. Carmen Arguedas & Francisco Cabo & Guiomar Martín-Herrán, 2017. "Optimal Pollution Standards and Non-compliance in a Dynamic Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 537-567, November.
  57. Iyer, Gokul C. & Clarke, Leon E. & Edmonds, James A. & Hultman, Nathan E. & McJeon, Haewon C., 2015. "Long-term payoffs of near-term low-carbon deployment policies," Energy Policy, Elsevier, vol. 86(C), pages 493-505.
  58. Schumacher, Ingmar, 2015. "The endogenous formation of an environmental culture," European Economic Review, Elsevier, vol. 76(C), pages 200-221.
  59. Costantini, Valeria & Crespi, Francesco, 2008. "Environmental regulation and the export dynamics of energy technologies," Ecological Economics, Elsevier, vol. 66(2-3), pages 447-460, June.
  60. Yu Hao & Yunxia Guo & Haitao Wu, 2022. "The role of information and communication technology on green total factor energy efficiency: Does environmental regulation work?," Business Strategy and the Environment, Wiley Blackwell, vol. 31(1), pages 403-424, January.
  61. Çalışır, Duran & Ekici, Selcuk & Midilli, Adnan & Karakoc, T. Hikmet, 2023. "Benchmarking environmental impacts of power groups used in a designed UAV: Hybrid hydrogen fuel cell system versus lithium-polymer battery drive system," Energy, Elsevier, vol. 262(PB).
  62. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
  63. Sterner, Thomas & Damon, Maria, 2011. "Green growth in the post-Copenhagen climate," Energy Policy, Elsevier, vol. 39(11), pages 7165-7173.
  64. Shuang Liang & Xinyue Lin & Xiaoxue Liu & Haoran Pan, 2022. "The Pathway to China’s Carbon Neutrality Based on an Endogenous Technology CGE Model," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
  65. Dugoua, Eugenie & Dumas, Marion, 2021. "Green product innovation in industrial networks: A theoretical model," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
  66. Grafström, Jonas & Lindman, Åsa, 2017. "Invention, innovation and diffusion in the European wind power sector," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 179-191.
  67. Vallentin, Daniel, 2007. "Inducing the international diffusion of carbon capture and storage technologies in the power sector," Wuppertal Papers 162, Wuppertal Institute for Climate, Environment and Energy.
  68. Ohyama, Atsuyuki & Tsujimura, Motoh, 2008. "Induced effects and technological innovation with strategic environmental policy," European Journal of Operational Research, Elsevier, vol. 190(3), pages 834-854, November.
  69. Larry Karp & Jiangfeng Zhang, 2016. "Taxes Versus Quantities for a Stock Pollutant with Endogenous Abatement Costs and Asymmetric Information," Studies in Economic Theory, in: Graciela Chichilnisky & Armon Rezai (ed.), The Economics of the Global Environment, pages 493-533, Springer.
  70. Managi, Shunsuke & Kaneko, Shinji, 2009. "Environmental performance and returns to pollution abatement in China," Ecological Economics, Elsevier, vol. 68(6), pages 1643-1651, April.
  71. de Coninck, Heleen & Fischer, Carolyn & Newell, Richard G. & Ueno, Takahiro, 2008. "International technology-oriented agreements to address climate change," Energy Policy, Elsevier, vol. 36(1), pages 335-356, January.
  72. Krysiak, Frank C., 2011. "Environmental regulation, technological diversity, and the dynamics of technological change," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 528-544, April.
  73. Tarik Tazdaït & Alejandro Caparros & Jean-Chrsitophe Péreau, 2007. "Emission trading and labor market rigidity inan international duopoly model," CIRED Working Papers halshs-00271222, HAL.
  74. Bramoulle, Yann & Olson, Lars J., 2005. "Allocation of pollution abatement under learning by doing," Journal of Public Economics, Elsevier, vol. 89(9-10), pages 1935-1960, September.
  75. Squires, Dale & Vestergaard, Niels, 2018. "Rethinking the commons problem: Technical change, knowledge spillovers, and social learning," Journal of Environmental Economics and Management, Elsevier, vol. 91(C), pages 1-25.
  76. Krysiak, Frank C., 2008. "Prices vs. quantities: The effects on technology choice," Journal of Public Economics, Elsevier, vol. 92(5-6), pages 1275-1287, June.
  77. Sun, Jiazhe & Wu, Shunan & Yang, Kaizhong, 2018. "An ecosystemic framework for business sustainability," Business Horizons, Elsevier, vol. 61(1), pages 59-72.
  78. Arik Levinson, 2011. "Belts and Suspenders: Interactions among Climate Policy Regulations," NBER Chapters, in: The Design and Implementation of US Climate Policy, pages 127-140, National Bureau of Economic Research, Inc.
  79. Goel, Rajeev K. & Hsieh, Edward W.T., 2006. "On coordinating environmental policy and technology policy," Journal of Policy Modeling, Elsevier, vol. 28(8), pages 897-908, November.
  80. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
  81. Menanteau, Philippe & Finon, Dominique & Lamy, Marie-Laure, 2003. "Prices versus quantities: choosing policies for promoting the development of renewable energy," Energy Policy, Elsevier, vol. 31(8), pages 799-812, June.
  82. Schmid, Gisèle, 2012. "The development of renewable energy power in India: Which policies have been effective?," Energy Policy, Elsevier, vol. 45(C), pages 317-326.
  83. Verònica Gombau & Agustí Segarra, 2011. "The Innovation and Imitation Dichotomy in Spanish firms: do absorptive capacity and the technological frontier matter?," Working Papers XREAP2011-22, Xarxa de Referència en Economia Aplicada (XREAP), revised Dec 2011.
  84. Copeland, Brian R., 2012. "International trade and green growth," Policy Research Working Paper Series 6235, The World Bank.
  85. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
  86. Ridier, Aude & Ben El Ghali, Mohamed & Nguyen, G. & Kephaliacos, Charilaos, 2013. "The role of risk aversion and labor constraints in the adoption of low input practices supported by the CAP green payments in cash crop farms," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 94(2).
  87. Vitor Miguel Ribeiro, 2014. "Long-term regulatory orientation and the ideal timing of quality investment," FEP Working Papers 552, Universidade do Porto, Faculdade de Economia do Porto.
  88. Lutz, Christian & Meyer, Bernd & Nathani, Carsten & Schleich, Joachim, 2005. "Endogenous technological change and emissions: the case of the German steel industry," Energy Policy, Elsevier, vol. 33(9), pages 1143-1154, June.
  89. Hugh McDonald & Suzi Kerr, 2011. "Trading Efficiency in Water Quality Trading Markets: An Assessment of Trade-Offs," Working Papers 11_15, Motu Economic and Public Policy Research.
  90. Parakram Pyakurel, 2021. "Green growth or degrowth? Evaluating the potential of technology for sustainability," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2021(1), pages 21-36.
  91. Buccella, Domenico & Fanti, Luciano & Gori, Luca, 2021. "To abate, or not to abate? A strategic approach on green production in Cournot and Bertrand duopolies," Energy Economics, Elsevier, vol. 96(C).
  92. Kim, Jung Eun, 2014. "Energy security and climate change: How oil endowment influences alternative vehicle innovation," Energy Policy, Elsevier, vol. 66(C), pages 400-410.
  93. Schumacher, Katja & Sands, Ronald D., 2007. "Where are the industrial technologies in energy-economy models? An innovative CGE approach for steel production in Germany," Energy Economics, Elsevier, vol. 29(4), pages 799-825, July.
  94. David Popp, 2003. "Pollution control innovations and the Clean Air Act of 1990," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 22(4), pages 641-660.
  95. Corinthias P. M. Sianipar & Gatot Yudoko & Kiyoshi Dowaki & Akbar Adhiutama, 2013. "Design Methodology for Appropriate Technology: Engineering as if People Mattered," Sustainability, MDPI, vol. 5(8), pages 1-44, August.
  96. Jorgenson, Dale W. & Jin, Hui & Slesnick, Daniel T. & Wilcoxen, Peter J., 2013. "An Econometric Approach to General Equilibrium Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1133-1212, Elsevier.
  97. Karanfil, Fatih & Yeddir-Tamsamani, Yasser, 2010. "Is technological change biased toward energy? A multi-sectoral analysis for the French economy," Energy Policy, Elsevier, vol. 38(4), pages 1842-1850, April.
  98. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
  99. Stavins, Robert & Jaffe, Judson & Schatski, Todd, 2007. "Too Good to Be True? An Examination of Three Economic Assessments of California Climate Change Policy," Working Paper Series rwp07-016, Harvard University, John F. Kennedy School of Government.
  100. Liu, Yang & Han, Liyan & Yin, Ziqiao & Luo, Kongyi, 2017. "A competitive carbon emissions scheme with hybrid fiscal incentives: The evidence from a taxi industry," Energy Policy, Elsevier, vol. 102(C), pages 414-422.
  101. Karp, Larry, 2008. "Correct (and misleading) arguments for using market based pollution control policies," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8rw5801j, Department of Agricultural & Resource Economics, UC Berkeley.
  102. Wen, Qiang & Zhang, Teng, 2022. "Economic policy uncertainty and industrial pollution: The role of environmental supervision by local governments," China Economic Review, Elsevier, vol. 71(C).
  103. Dong, C.G., 2012. "Feed-in tariff vs. renewable portfolio standard: An empirical test of their relative effectiveness in promoting wind capacity development," Energy Policy, Elsevier, vol. 42(C), pages 476-485.
  104. Veugelers, Reinhilde, 2012. "Which policy instruments to induce clean innovating?," Research Policy, Elsevier, vol. 41(10), pages 1770-1778.
  105. Garrick, Dustin & Whitten, Stuart M. & Coggan, Anthea, 2013. "Understanding the evolution and performance of water markets and allocation policy: A transaction costs analysis framework," Ecological Economics, Elsevier, vol. 88(C), pages 195-205.
  106. Noailly, Joëlle & Batrakova, Svetlana, 2010. "Stimulating energy-efficient innovations in the Dutch building sector: Empirical evidence from patent counts and policy lessons," Energy Policy, Elsevier, vol. 38(12), pages 7803-7817, December.
  107. David Grover, 2012. "Knowledge versus technique in SO2-saving technological change: A comparative test using quantile regression with implications for greenhouse gas compliance," GRI Working Papers 99, Grantham Research Institute on Climate Change and the Environment.
  108. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
  109. Popp, David, 2006. "Innovation in climate policy models: Implementing lessons from the economics of R&D," Energy Economics, Elsevier, vol. 28(5-6), pages 596-609, November.
  110. Sterner, Thomas & Turnheim, Bruno, 2009. "Innovation and diffusion of environmental technology: Industrial NOx abatement in Sweden under refunded emission payments," Ecological Economics, Elsevier, vol. 68(12), pages 2996-3006, October.
  111. Di Maria, Corrado & Smulders, Sjak, 2017. "A paler shade of green: Environmental policy under induced technical change," European Economic Review, Elsevier, vol. 99(C), pages 151-169.
  112. Barla, Philippe & Proost, Stef, 2012. "Energy efficiency policy in a non-cooperative world," Energy Economics, Elsevier, vol. 34(6), pages 2209-2215.
  113. Morgan, Cynthia & Pasurka, Carl & Shadbegian, Ron & Belova, Anna & Casey, Brendan, 2023. "Estimating the cost of environmental regulations and technological change with limited information," Ecological Economics, Elsevier, vol. 204(PA).
  114. Ian W.H. Parry & Mr. John Norregaard & Mr. Dirk Heine, 2012. "Environmental Tax Reform: Principles from Theory and Practice to Date," IMF Working Papers 2012/180, International Monetary Fund.
  115. Kanjilal, Kakali & Ghosh, Sajal, 2013. "Environmental Kuznet’s curve for India: Evidence from tests for cointegration with unknown structuralbreaks," Energy Policy, Elsevier, vol. 56(C), pages 509-515.
  116. Djiby Racine Thiam & Ariel Dinar & Hebert Ntuli, 2021. "Promotion of residential water conservation measures in South Africa: the role of water-saving equipment," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 173-210, January.
  117. Kumar, Surender & Managi, Shunsuke, 2009. "Energy price-induced and exogenous technological change: Assessing the economic and environmental outcomes," Resource and Energy Economics, Elsevier, vol. 31(4), pages 334-353, November.
  118. repec:hal:spmain:info:hdl:2441/4b9o704lm99vm9u7s9e6fdpp6r is not listed on IDEAS
  119. Stavins, Robert, 2004. "Can an Effective Global Climate Treaty Be Based on Sound Science, Rational Economics, and Pragmatic Politics?," RFF Working Paper Series dp-04-28, Resources for the Future.
  120. Yu-Ying Lin, Eugene & Chen, Ping-Yu & Chen, Chi-Chung, 2013. "Measuring green productivity of country: A generlized metafrontier Malmquist productivity index approach," Energy, Elsevier, vol. 55(C), pages 340-353.
  121. Fischer, Carolyn & Newell, Richard G., 2005. "Environmental and Technology Policies for Climate Change and Renewable Energy," Discussion Papers 10789, Resources for the Future.
  122. David Grover, 2012. "The �advancedness� of knowledge in pollutionsaving technological change with a qualitative application to SO2 cap and trade," GRI Working Papers 100, Grantham Research Institute on Climate Change and the Environment.
  123. Elaine Frey, 2008. "Technology Diffusion and Environmental Regulation: The Adoption of Scrubbers by Coal-Fired Power Plants," NCEE Working Paper Series 200804, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2008.
  124. Shunsuke Managi & Pradyot Ranjan Jena, 2007. "Productivity and Environment in India," Economics Bulletin, AccessEcon, vol. 17(1), pages 1-14.
  125. Yenipazarli, Arda, 2019. "Incentives for environmental research and development: Consumer preferences, competitive pressure and emissions taxation," European Journal of Operational Research, Elsevier, vol. 276(2), pages 757-769.
  126. Pan, Haoran & Kohler, Jonathan, 2007. "Technological change in energy systems: Learning curves, logistic curves and input-output coefficients," Ecological Economics, Elsevier, vol. 63(4), pages 749-758, September.
  127. Bouwe R. Dijkstra & Anuj J. Mathew, 2009. "Liberalizing Trade in Environmental Goods," Faculty Working Papers 16/09, School of Economics and Business Administration, University of Navarra.
  128. van Zon, Adriaan & Yetkiner, I. Hakan, 2003. "An endogenous growth model with embodied energy-saving technical change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 81-103, February.
  129. Martin Kalthaus & Jiatang Sun, 2021. "Determinants of Electric Vehicle Diffusion in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(3), pages 473-510, November.
  130. McNeill, Judith M. & Williams, Jeremy B., 2007. "The employment effects of sustainable development policies," Ecological Economics, Elsevier, vol. 64(1), pages 216-223, October.
  131. Teixidó, Jordi & Verde, Stefano F. & Nicolli, Francesco, 2019. "The impact of the EU Emissions Trading System on low-carbon technological change: The empirical evidence," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
  132. Yao, Shiyue & Yu, Xueying & Yan, Sen & Wen, Shiyan, 2021. "Heterogeneous emission trading schemes and green innovation," Energy Policy, Elsevier, vol. 155(C).
  133. Benjamin Jones & Michael Keen & Jon Strand, 2013. "Fiscal implications of climate change," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(1), pages 29-70, February.
  134. Jin, Hui & Jorgenson, Dale W., 2010. "Econometric modeling of technical change," Journal of Econometrics, Elsevier, vol. 157(2), pages 205-219, August.
  135. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
  136. Kemp, René & Pontoglio, Serena, 2011. "The innovation effects of environmental policy instruments — A typical case of the blind men and the elephant?," Ecological Economics, Elsevier, vol. 72(C), pages 28-36.
  137. Grover, David, 2013. "The ‘advancedness’ of knowledge in pollution-saving technological change with a qualitative application to SO2 cap and trade," Ecological Economics, Elsevier, vol. 89(C), pages 123-134.
  138. repec:spo:wpecon:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
  139. Rai, Varun & Funkhouser, Erik, 2015. "Emerging insights on the dynamic drivers of international low-carbon technology transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 350-364.
  140. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
  141. Bangalore, Mook & Hochman, Gal & Zilberman, David, 2016. "Policy incentives and adoption of agricultural anaerobic digestion: A survey of Europe and the United States," Renewable Energy, Elsevier, vol. 97(C), pages 559-571.
  142. Adela Conchado & Pedro Linares, 2017. "A New ‘Cut’ on Technological Innovation Aiming for Sustainability in a Globalized World," SPRU Working Paper Series 2017-25, SPRU - Science Policy Research Unit, University of Sussex Business School.
  143. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
  144. Alberto Quadrio Curzio & Fausta Pellizzari & Roberto Zoboli, 2011. "Resources and Technologies," CRANEC - Working Papers del Centro di Ricerche in Analisi economica e sviluppo economico internazionale crn1101, Università Cattolica del Sacro Cuore, Centro di Ricerche in Analisi economica e sviluppo economico internazionale (CRANEC).
  145. Gonseth, Camille & Cadot, Olivier & Mathys, Nicole A. & Thalmann, Philippe, 2015. "Energy-tax changes and competitiveness: The role of adaptive capacity," Energy Economics, Elsevier, vol. 48(C), pages 127-135.
  146. Nabila Arfaoui & Eric Brouillat & Maïder Saint-Jean, 2013. "Policy Design, Eco-innovation and Industrial Dynamics in an Agent-Based Model: An Illustration with the REACH Regulation," GREDEG Working Papers 2013-22, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France, revised Oct 2013.
  147. Arik Levinson & James O'Brien, 2015. "Environmental Engel Curves," NBER Working Papers 20914, National Bureau of Economic Research, Inc.
  148. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
  149. Thiam, Djiby Racine, 2011. "An energy pricing scheme for the diffusion of decentralized renewable technology investment in developing countries," Energy Policy, Elsevier, vol. 39(7), pages 4284-4297, July.
  150. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
  151. Fabrizi, Andrea & Guarini, Giulio & Meliciani, Valentina, 2018. "Green patents, regulatory policies and research network policies," Research Policy, Elsevier, vol. 47(6), pages 1018-1031.
  152. Turner, Karen & Hanley, Nick, 2011. "Energy efficiency, rebound effects and the environmental Kuznets Curve," Energy Economics, Elsevier, vol. 33(5), pages 709-720, September.
  153. Anderson, Soren T. & Newell, Richard G., 2004. "Information programs for technology adoption: the case of energy-efficiency audits," Resource and Energy Economics, Elsevier, vol. 26(1), pages 27-50, March.
  154. Deeney, Peter & Cummins, Mark & Heintz, Katharina & Pryce, Mary T., 2021. "A real options based decision support tool for R&D investment: Application to CO2 recycling technology," European Journal of Operational Research, Elsevier, vol. 289(2), pages 696-711.
  155. Yoram Bauman & Myunghun Lee & Karl Seeley, 2008. "Does Technological Innovation Really Reduce Marginal Abatement Costs? Some Theory, Algebraic Evidence, and Policy Implications," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(4), pages 507-527, August.
  156. Sarpong, David & Boakye, Derrick & Ofosu, George & Botchie, David, 2023. "The three pointers of research and development (R&D) for growth-boosting sustainable innovation system," Technovation, Elsevier, vol. 122(C).
  157. Massimiliano Mazzanti & Valeria Costantini & Susanna Mancinelli & Massimilano Corradini, 2011. "Environmental and Innovation Performance in a Dynamic Impure Public Good Framework," Working Papers 201117, University of Ferrara, Department of Economics.
  158. Sierzchula, William & Nemet, Gregory, 2015. "Using patents and prototypes for preliminary evaluation of technology-forcing policies: Lessons from California's Zero Emission Vehicle regulations," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 213-224.
  159. Rajagopal, Deepak & Zilberman, David, 2013. "On market-mediated emissions and regulations on life cycle emissions," Ecological Economics, Elsevier, vol. 90(C), pages 77-84.
  160. Bretschger, Lucas, 2005. "Economics of technological change and the natural environment: How effective are innovations as a remedy for resource scarcity?," Ecological Economics, Elsevier, vol. 54(2-3), pages 148-163, August.
  161. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
  162. Jackson, Jerry, 2007. "Are US utility standby rates inhibiting diffusion of customer-owned generating systems?," Energy Policy, Elsevier, vol. 35(3), pages 1896-1908, March.
  163. Sonja Peterson, 2008. "Greenhouse gas mitigation in developing countries through technology transfer?: a survey of empirical evidence," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(3), pages 283-305, March.
  164. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
  165. Somlanaré Romuald Kinda, 2009. "Convergence des émissions par tête de dioxyde de carbone : Le rôle de l'éducation," Post-Print hal-00692146, HAL.
  166. Yang, Fuxia & Yang, Mian, 2015. "Analysis on China's eco-innovations: Regulation context, intertemporal change and regional differences," European Journal of Operational Research, Elsevier, vol. 247(3), pages 1003-1012.
  167. Kurt Kratena & Michael Wüger, 2012. "Technological Change and Energy Demand in Europe," WIFO Working Papers 427, WIFO.
  168. Bleischwitz, Raimund, 2002. "Cognitive and institutional perspectives of eco effiency: A new research landscape towards factor four (or more)," Wuppertal Papers 123, Wuppertal Institute for Climate, Environment and Energy.
  169. Cui, Cathy Xin & Ha, Soo Jung & Hanley, Nicholas & McGregor, Peter G & Turner, Karen & Yin, Ya Ping, 2011. "Productivity Growth, Decoupling and Pollution Leakage," Stirling Economics Discussion Papers 2011-13, University of Stirling, Division of Economics.
  170. Jena, Pradyot Ranjan, 2009. "Estimating environmental efficiency and Kuznets curve for India," 2009 Conference, August 16-22, 2009, Beijing, China 51302, International Association of Agricultural Economists.
  171. Löschel, Andreas & Reif, Christiane & Kesternich, Martin & Koesler, Simon & Osberghaus, Daniel & Korioth, Stefan, 2011. "Lösungsansätze zur systemeffizienten Ausgestaltung der nationalen Mittelverwendung der Einnahmen aus der Versteigerung von Zertifikaten im Rahmen des EU-ETS: Endbericht, März 2011," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 110535, September.
  172. Ming Zhang & Ruifeng Sun & Wenwen Wang, 2021. "Study on the effect of public participation on air pollution control based on China's Provincial level data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12814-12827, September.
  173. Xiang Bi & Connor Mullally, 2021. "Does Peer Adoption Increase the Diffusion of Pollution Prevention Practices?," Land Economics, University of Wisconsin Press, vol. 97(1), pages 224-245.
  174. Song, Malin & Wang, Shuhong, 2016. "Can employment structure promote environment-biased technical progress?," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 285-292.
  175. Halkos, George, 2000. "Determining optimal air quality standards: Quantities or prices?," MPRA Paper 42849, University Library of Munich, Germany.
  176. Marius Christian Ley, 2010. "Insights into the Determinants of Innovation in Energy Efficiency," KOF Working papers 10-266, KOF Swiss Economic Institute, ETH Zurich.
  177. Baker, Erin & Shittu, Ekundayo, 2008. "Uncertainty and endogenous technical change in climate policy models," Energy Economics, Elsevier, vol. 30(6), pages 2817-2828, November.
  178. Raineri, Ricardo, 2010. "Asset life and pricing the use of electricity transmission infrastructure in Chile," Energy Policy, Elsevier, vol. 38(1), pages 30-41, January.
  179. Richard A. Hunt & Bret R. Fund, 2016. "Intergenerational Fairness and the Crowding Out Effects of Well-Intended Environmental Policies," Journal of Management Studies, Wiley Blackwell, vol. 53(5), pages 878-910, July.
  180. Shunsuke Managi & Shinji Kaneko, 2004. "Environmental Productivity in China," Economics Bulletin, AccessEcon, vol. 17(2), pages 1-10.
  181. Kim, Yeong Jae & Brown, Marilyn, 2019. "Impact of domestic energy-efficiency policies on foreign innovation: The case of lighting technologies," Energy Policy, Elsevier, vol. 128(C), pages 539-552.
  182. Mazzanti, Massimiliano & Zoboli, Roberto, 2009. "Environmental efficiency and labour productivity: Trade-off or joint dynamics? A theoretical investigation and empirical evidence from Italy using NAMEA," Ecological Economics, Elsevier, vol. 68(4), pages 1182-1194, February.
  183. Managi, Shunsuke & Jena, Pradyot Ranjan, 2008. "Environmental productivity and Kuznets curve in India," Ecological Economics, Elsevier, vol. 65(2), pages 432-440, April.
  184. Mani, Muthukumara S., 2012. "Assessing the investment climate for climate investments : a comparative framework for clean energy investments in South Asia in a global context," Policy Research Working Paper Series 6211, The World Bank.
  185. Giulio Guarini & Giuseppe Garofalo & Alessandro Federici, 2014. "A Virtuous Cumulative Growth Circle among Innovation, Inclusion and Sustainability? A Structuralist-Keynesian Analysis with an Application on Europe," GREDEG Working Papers 2014-39, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
  186. Hamamoto, Mitsutsugu, 2006. "Environmental regulation and the productivity of Japanese manufacturing industries," Resource and Energy Economics, Elsevier, vol. 28(4), pages 299-312, November.
  187. Shao, Shuai & Yang, Lili & Gan, Chunhui & Cao, Jianhua & Geng, Yong & Guan, Dabo, 2016. "Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 516-536.
  188. Hammar, Henrik & Löfgren, Åsa, 2010. "Explaining adoption of end of pipe solutions and clean technologies--Determinants of firms' investments for reducing emissions to air in four sectors in Sweden," Energy Policy, Elsevier, vol. 38(7), pages 3644-3651, July.
  189. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2023. "Green technologies, interdependencies, and policy," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
  190. David Popp, 2010. "Exploring Links Between Innovation and Diffusion: Adoption of NO X Control Technologies at US Coal-fired Power Plants," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(3), pages 319-352, March.
  191. Fuhai Hong & Susheng Wang, 2012. "Climate Policy, Learning, and Technology Adoption in Small Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(3), pages 391-411, March.
  192. Giulio Guarini, 2015. "Complementarity between environmental efficiency and labour productivity in a cumulative growth process," PSL Quarterly Review, Economia civile, vol. 68(272), pages 41-56.
  193. Jorgenson, Dale W., 2016. "Econometric general equilibrium modeling," Journal of Policy Modeling, Elsevier, vol. 38(3), pages 436-447.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.