IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v158y2021ics0301421521004407.html
   My bibliography  Save this article

Do federal regulations beget innovation? Legislative policy and the role of executive orders

Author

Listed:
  • Smirnova, Olga
  • Strumsky, Deborah
  • Qualls, Ashley C.

Abstract

Our research note focuses on whether policy changes in the transportation sector contribute to green innovations, measured as patents. We explore federal policies, specifically energy policies such as Energy Policy Act of 1992 or 2005, that provide incentives for the development of environmentally friendly technologies in transportation. Drawing on a combination of qualitative and quantitative data, we construct and test several novel policy measures while controlling for other factors that may influence green transportation innovations. We develop a unique legislative timeline with the use of key-informant interviews, literature searches, and legislative updates reviews. Only one policy variable (executive orders) appears to have a positive effect on the number of patents in green transportation innovation sphere. High capital expenditures for pollution abatement decrease innovation activity, while high operating expenditures increase innovation activity. The federal policies over the time period analyzed seem to create uncertainty rather than provide a clear incentive for innovation. The executive orders may affect innovation levels; further tests are needed with the changes in political leadership. The results of our research note signal that stronger and more consistent incentives at federal level may be necessary to realize desired policy outcomes.

Suggested Citation

  • Smirnova, Olga & Strumsky, Deborah & Qualls, Ashley C., 2021. "Do federal regulations beget innovation? Legislative policy and the role of executive orders," Energy Policy, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:enepol:v:158:y:2021:i:c:s0301421521004407
    DOI: 10.1016/j.enpol.2021.112570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521004407
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112570?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Broberg & Per-Olov Marklund & Eva Samakovlis & Henrik Hammar, 2013. "Testing the Porter hypothesis: the effects of environmental investments on efficiency in Swedish industry," Journal of Productivity Analysis, Springer, vol. 40(1), pages 43-56, August.
    2. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    3. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    4. Sovacool, Benjamin K. & Jeppesen, Jakob & Bandsholm, Jesper & Asmussen, Joakim & Balachandran, Rakulan & Vestergaard, Simon & Andersen, Thomas Hauerslev & Sørensen, Thomas Klode & Bjørn-Thygesen, Fran, 2017. "Navigating the “paradox of openness” in energy and transport innovation: Insights from eight corporate clean technology research and development case studies," Energy Policy, Elsevier, vol. 105(C), pages 236-245.
    5. Montero, Juan-Pablo, 2002. "Permits, Standards, and Technology Innovation," Journal of Environmental Economics and Management, Elsevier, vol. 44(1), pages 23-44, July.
    6. repec:dgr:umamer:2005008 is not listed on IDEAS
    7. Ben Kriechel & Thomas Ziesemer, 2009. "The environmental Porter hypothesis: theory, evidence, and a model of timing of adoption," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 18(3), pages 267-294.
    8. Deborah Strumsky & José Lobo & Sander van der Leeuw, 2012. "Using patent technology codes to study technological change," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 21(3), pages 267-286, April.
    9. Vincenzo Rusciano & Gennaro Civero & Debora Scarpato, 2020. "Social and Ecological High Influential Factors in Community Gardens Innovation: An Empirical Survey in Italy," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    10. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    11. Jaffe, Adam B., 2000. "The U.S. patent system in transition: policy innovation and the innovation process," Research Policy, Elsevier, vol. 29(4-5), pages 531-557, April.
    12. Elaine F. Frey, 2013. "Technology Diffusion and Environmental Regulation: The Adoption of Scrubbers by Coal-Fired Power Plants," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    13. David Popp, 2010. "Innovation and Climate Policy," NBER Working Papers 15673, National Bureau of Economic Research, Inc.
    14. Nentjes, Andries & de Vries, Frans P. & Wiersma, Doede, 2007. "Technology-forcing through environmental regulation," European Journal of Political Economy, Elsevier, vol. 23(4), pages 903-916, December.
    15. Strumsky, Deborah & Lobo, José, 2015. "Identifying the sources of technological novelty in the process of invention," Research Policy, Elsevier, vol. 44(8), pages 1445-1461.
    16. David Popp, 2003. "Pollution control innovations and the Clean Air Act of 1990," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 22(4), pages 641-660.
    17. Sovacool, Benjamin K. & Lipson, Matthew M. & Chard, Rose, 2019. "Temporality, vulnerability, and energy justice in household low carbon innovations," Energy Policy, Elsevier, vol. 128(C), pages 495-504.
    18. David Popp, 2010. "Innovation and Climate Policy," Annual Review of Resource Economics, Annual Reviews, vol. 2(1), pages 275-298, October.
    19. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    20. Bretschger, Lucas, 2005. "Economics of technological change and the natural environment: How effective are innovations as a remedy for resource scarcity?," Ecological Economics, Elsevier, vol. 54(2-3), pages 148-163, August.
    21. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    22. Pablo Del Rio Gonzalez, 2004. "Public policy and clean technology promotion. The synergy between environmental economics and evolutionary economics of technological change," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 7(2), pages 200-216.
    23. Benjamin K. Sovacool & Steve Griffiths, 2020. "Culture and low-carbon energy transitions," Nature Sustainability, Nature, vol. 3(9), pages 685-693, September.
    24. Michael E. Porter & Claas van der Linde, 1995. "Toward a New Conception of the Environment-Competitiveness Relationship," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 97-118, Fall.
    25. Requate, Till & Unold, Wolfram, 2003. "Environmental policy incentives to adopt advanced abatement technology:: Will the true ranking please stand up?," European Economic Review, Elsevier, vol. 47(1), pages 125-146, February.
    26. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Nie & Jianxian Wu & Han Wang & Lihua Li & Chengdao Huang & Weijuan Li & Zhuxia Wei, 2022. "Booster or Stumbling Block? The Role of Environmental Regulation in the Coupling Path of Regional Innovation under the Porter Hypothesis," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    2. Jun Wen & Lingxiao Li & Xinxin Zhao & Chenyang Jiao & Wenjie Li, 2022. "How Government Size Expansion Can Affect Green Innovation—An Empirical Analysis of Data on Cross-Country Green Patent Filings," IJERPH, MDPI, vol. 19(12), pages 1-22, June.
    3. Weizhou Su & Gaowen Lei & Sidai Guo & Hongche Dan, 2022. "Study on the Influence Mechanism of Environmental Management System Certification on Enterprise Green Innovation," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    4. Jiang, Zihao & Shi, Jiarong, 2023. "Government intervention and technological innovation in the wind power industry in China: The role of industrial environmental turbulence," Applied Energy, Elsevier, vol. 344(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    2. Lee, Jaegul & Veloso, Francisco M. & Hounshell, David A., 2011. "Linking induced technological change, and environmental regulation: Evidence from patenting in the U.S. auto industry," Research Policy, Elsevier, vol. 40(9), pages 1240-1252.
    3. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    4. Kemp, René & Pontoglio, Serena, 2011. "The innovation effects of environmental policy instruments — A typical case of the blind men and the elephant?," Ecological Economics, Elsevier, vol. 72(C), pages 28-36.
    5. Marin, Giovanni, 2014. "Do eco-innovations harm productivity growth through crowding out? Results of an extended CDM model for Italy," Research Policy, Elsevier, vol. 43(2), pages 301-317.
    6. Fabrizi, Andrea & Guarini, Giulio & Meliciani, Valentina, 2018. "Green patents, regulatory policies and research network policies," Research Policy, Elsevier, vol. 47(6), pages 1018-1031.
    7. Carrión-Flores, Carmen E. & Innes, Robert, 2010. "Environmental innovation and environmental performance," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 27-42, January.
    8. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    9. Francesco Vona & Francesco Nicolli & Lionel Nesta, 2012. "Determinants of renewable energy innovation: environmental policies vs. market regulation," Sciences Po publications 2012-05, Sciences Po.
    10. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    11. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09j0h0ji242 is not listed on IDEAS
    12. Alessandra Colombelli & Jackie Krafft & Francesco Quatraro, 2021. "Firms’ growth, green gazelles and eco-innovation: evidence from a sample of European firms," Small Business Economics, Springer, vol. 56(4), pages 1721-1738, April.
    13. Galloway, Emily & Johnson, Erik Paul, 2016. "Teaching an old dog new tricks: Firm learning from environmental regulation," Energy Economics, Elsevier, vol. 59(C), pages 1-10.
    14. Costantini, Valeria & Crespi, Francesco, 2008. "Environmental regulation and the export dynamics of energy technologies," Ecological Economics, Elsevier, vol. 66(2-3), pages 447-460, June.
    15. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    16. Nicolli, Francesco & Vona, Francesco, 2016. "Heterogeneous policies, heterogeneous technologies: The case of renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 190-204.
    17. Stefan Ambec & Mark A. Cohen & Stewart Elgie & Paul Lanoie, 2013. "The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 2-22, January.
    18. Costantini, Valeria & Mazzanti, Massimiliano, 2012. "On the green and innovative side of trade competitiveness? The impact of environmental policies and innovation on EU exports," Research Policy, Elsevier, vol. 41(1), pages 132-153.
    19. Serkan ÇINAR & Mine YILMAZER, 2021. "Determinants of Green Technologies in Developing Countries," Isletme ve Iktisat Calismalari Dergisi, Econjournals, vol. 9(2), pages 155-167.
    20. Gonseth, Camille & Cadot, Olivier & Mathys, Nicole A. & Thalmann, Philippe, 2015. "Energy-tax changes and competitiveness: The role of adaptive capacity," Energy Economics, Elsevier, vol. 48(C), pages 127-135.
    21. Esfandiar Maasoumi & Almas Heshmati & Inhee Lee, 2021. "Green innovations and patenting renewable energy technologies," Empirical Economics, Springer, vol. 60(1), pages 513-538, January.
    22. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:158:y:2021:i:c:s0301421521004407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.