IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03403611.html
   My bibliography  Save this paper

Green transitions and the prevention of environmental disasters: market based vs command-and-control policies

Author

Listed:
  • Francesco Lamperti

    (UP1 - Université Paris 1 Panthéon-Sorbonne)

  • Mauro Napoletano

    (OFCE - Observatoire français des conjonctures économiques (Sciences Po) - Sciences Po - Sciences Po, SKEMA Business School, UniCA - Université Côte d'Azur, SSSUP - Scuola Universitaria Superiore Sant'Anna = Sant'Anna School of Advanced Studies [Pisa])

  • Andrea Roventini

    (OFCE - Observatoire français des conjonctures économiques (Sciences Po) - Sciences Po - Sciences Po)

Abstract

The paper compares the effects of market-based (M-B) and command-and-control (C&C) climate policies on the direction of technical change and the prevention of environmental disasters. Drawing on a model of endogenous growth and directed technical change, we show that M-B policies (carbon taxes and subsidies toward clean sectors) suffer from path dependence and exhibit bounded window of opportunities: delays in their implementation make them ineffective both in redirecting technical change, (i.e. triggering a transition toward clean energy) and in avoiding environmental catastrophes. On the contrary, we find that C&C interventions are favored by path dependence and guarantee policy effectiveness irrespectively of the timing of their introduction. As the hypothesis of path dependence in technological change has received vast empirical support and it is a key feature of many models of growth, we argue that C&C policies should be seen as a valuable and non-equivalent alternative to M-B interventions.

Suggested Citation

  • Francesco Lamperti & Mauro Napoletano & Andrea Roventini, 2019. "Green transitions and the prevention of environmental disasters: market based vs command-and-control policies," Post-Print hal-03403611, HAL.
  • Handle: RePEc:hal:journl:hal-03403611
    DOI: 10.1017/S1365100518001001
    Note: View the original document on HAL open archive server: https://sciencespo.hal.science/hal-03403611
    as

    Download full text from publisher

    File URL: https://sciencespo.hal.science/hal-03403611/document
    Download Restriction: no

    File URL: https://libkey.io/10.1017/S1365100518001001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Li, Zhe & Sun, Jianfei, 2015. "Emission taxes and standards in a general equilibrium with entry and exit," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 34-60.
    2. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    3. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    4. Jobert, Thomas & Karanfil, Fatih & Tykhonenko, Anna, 2019. "Degree Of Stringency Matters: Revisiting The Pollution Haven Hypothesis Based On Heterogeneous Panels And Aggregate Data," Macroeconomic Dynamics, Cambridge University Press, vol. 23(7), pages 2675-2697, October.
    5. Nordhaus, William D, 1991. "To Slow or Not to Slow: The Economics of the Greenhouse Effect," Economic Journal, Royal Economic Society, vol. 101(407), pages 920-937, July.
    6. Joshua S. Gans, 2012. "Innovation and Climate Change Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(4), pages 125-145, November.
    7. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    8. Martin L. Weitzman, 1974. "Prices vs. Quantities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(4), pages 477-491.
    9. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    10. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    11. van der Meijden, Gerard & Smulders, Sjak, 2018. "Technological Change During The Energy Transition," Macroeconomic Dynamics, Cambridge University Press, vol. 22(4), pages 805-836, June.
    12. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    13. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, January.
    14. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    15. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    16. Otto, Vincent M. & Reilly, John, 2008. "Directed technical change and the adoption of CO2 abatement technology: The case of CO2 capture and storage," Energy Economics, Elsevier, vol. 30(6), pages 2879-2898, November.
    17. Palivos, Theodore & Varvarigos, Dimitrios, 2017. "Pollution Abatement As A Source Of Stabilization And Long-Run Growth," Macroeconomic Dynamics, Cambridge University Press, vol. 21(3), pages 644-676, April.
    18. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    19. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    20. Tunç Durmaz & Fred Schroyen, 2020. "Evaluating Carbon Capture And Storage In A Climate Model With Endogenous Technical Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-47, February.
    21. Joseph S. Shapiro & Reed Walker, 2018. "Why Is Pollution from US Manufacturing Declining? The Roles of Environmental Regulation, Productivity, and Trade," American Economic Review, American Economic Association, vol. 108(12), pages 3814-3854, December.
    22. Mads Greaker & Tom‐Reiel Heggedal & Knut Einar Rosendahl, 2018. "Environmental Policy and the Direction of Technical Change," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(4), pages 1100-1138, October.
    23. Bretschger, Lucas & Schaefer, Andreas, 2017. "Dirty history versus clean expectations: Can energy policies provide momentum for growth?," European Economic Review, Elsevier, vol. 99(C), pages 170-190.
    24. Lee, Jaegul & Veloso, Francisco M. & Hounshell, David A., 2011. "Linking induced technological change, and environmental regulation: Evidence from patenting in the U.S. auto industry," Research Policy, Elsevier, vol. 40(9), pages 1240-1252.
    25. Buchanan, James M, 1969. "External Diseconomies, Corrective Taxes, and Market Structure," American Economic Review, American Economic Association, vol. 59(1), pages 174-177, March.
    26. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then He wasn't a She : Climate change and green transitions in an agent-based model integrated assessment model," Documents de Travail de l'OFCE 2018-28, Observatoire Francais des Conjonctures Economiques (OFCE).
    27. Shapiro, Joseph S. & Walker, Reed, 2015. "Why is Pollution from U.S. Manufacturing Declining? The Roles of Trade, Regulation, Productivity, and Preferences," IZA Discussion Papers 8789, Institute of Labor Economics (IZA).
    28. repec:hal:spmain:info:hdl:2441/5vt1fet9fq9o5pkgj2qh2vn1cm is not listed on IDEAS
    29. Joseph S. Shapiro & Reed Walker, 2018. "Why Is Pollution from US Manufacturing Declining? The Roles of Environmental Regulation, Productivity, and Trade," American Economic Review, American Economic Association, vol. 108(12), pages 3814-3854, December.
    30. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    31. Gerlagh, R. & Kverndokk, S. & Rosendahl, K.E., 2009. "Optimal timing of climate change policy : Interaction between carbon taxes and innovation externalities," Other publications TiSEM 4312dde8-f323-4ee2-9764-a, Tilburg University, School of Economics and Management.
    32. Cameron Hepburn, 2006. "Regulation by Prices, Quantities, or Both: A Review of Instrument Choice," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 22(2), pages 226-247, Summer.
    33. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2011. "Climate change mitigation options and directed technical change: A decentralized equilibrium analysis," Resource and Energy Economics, Elsevier, vol. 33(4), pages 938-962.
    34. Shouyong Shi & Zhe Li, 2010. "Emission Tax or Standard: The Roles of Productivity Dispersion and Abatement," 2010 Meeting Papers 587, Society for Economic Dynamics.
    35. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
    36. Constant, Karine & Davin, Marion, 2019. "Environmental Policy And Growth When Environmental Awareness Is Endogenous," Macroeconomic Dynamics, Cambridge University Press, vol. 23(3), pages 1102-1136, April.
    37. Jobert, Thomas & Karanfil, Fatih & Tykhonenko, Anna, 2019. "Degree Of Stringency Matters: Revisiting The Pollution Haven Hypothesis Based On Heterogeneous Panels And Aggregate Data," Macroeconomic Dynamics, Cambridge University Press, vol. 23(7), pages 2675-2697, October.
    38. Zhe Li & Shouyong Shi, 2010. "Emission Tax or Standard? The Role of Productivity Dispersion," Working Papers tecipa-409, University of Toronto, Department of Economics.
    39. Nordhaus, William D., 1993. "Rolling the 'DICE': an optimal transition path for controlling greenhouse gases," Resource and Energy Economics, Elsevier, vol. 15(1), pages 27-50, March.
    40. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    41. Rozenberg, Julie & Vogt-Schilb, Adrien & Hallegatte, Stephane, 2014. "Transition to clean capital, irreversible investment and stranded assets," Policy Research Working Paper Series 6859, The World Bank.
    42. William D. Nordhaus, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 686-702, September.
    43. Lawrence H. Goulder & Ian W. H. Parry, 2008. "Instrument Choice in Environmental Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(2), pages 152-174, Summer.
    44. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    45. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    46. Reyer Gerlagh & Snorre Kverndokk & Knut Rosendahl, 2009. "Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 369-390, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Lamperti & Mariana Mazzucato & Andrea Roventini & Gregor Semieniuk, 2019. "The Green Transition: Public Policy, Finance, and the Role of the State," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 88(2), pages 73-88.
    2. Donnelly, David & Fricaudet, Marie & Ameli, Nadia, 2023. "“Accelerating institutional funding of low-carbon investment: The potential for an investment emissions intensity tax”," Ecological Economics, Elsevier, vol. 207(C).
    3. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    4. Giovanni Bernardo & Pasquale Commendatore & Giovanni Fosco, 2024. "Revealing the Link Between Air Pollution and Internal Migration: Evidence from Italy," Discussion Papers 2024/312, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    5. Carè, R. & Fatima, R. & Boitan, I.A., 2024. "Central banks and climate risks: Where we are and where we are going?," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1200-1229.
    6. Francesco Lamperti & Andrea Roventini, 2022. "Beyond climate economics orthodoxy: impacts and policies in the agent-based integrated-assessment DSK model," European Journal of Economics and Economic Policies: Intervention, Edward Elgar Publishing, vol. 19(3), pages 357-380, December.
    7. Fiorillo, Damiano & Sapio, Alessandro, 2019. "Energy saving in Italy in the late 1990s: Which role for non-monetary motivations?," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    8. Hötte, Kerstin, 2020. "How to accelerate green technology diffusion? Directed technological change in the presence of coevolving absorptive capacity," Energy Economics, Elsevier, vol. 85(C).
    9. Zhang, Dan & Zheng, Mingbo & Feng, Gen-Fu & Chang, Chun-Ping, 2022. "Does an environmental policy bring to green innovation in renewable energy?," Renewable Energy, Elsevier, vol. 195(C), pages 1113-1124.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:spo:wpmain:info:hdl:2441/14g286e42n8bl9is6h16b18kes is not listed on IDEAS
    2. repec:hal:spmain:info:hdl:2441/14g286e42n8bl9is6h16b18kes is not listed on IDEAS
    3. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    4. Joseph E. Aldy & Alan J. Krupnick & Richard G. Newell & Ian W. H. Parry & William A. Pizer, 2010. "Designing Climate Mitigation Policy," Journal of Economic Literature, American Economic Association, vol. 48(4), pages 903-934, December.
    5. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    6. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    7. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    8. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    9. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    10. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    11. Shiell, Leslie & Lyssenko, Nikita, 2014. "Climate policy and induced R&D: How great is the effect?," Energy Economics, Elsevier, vol. 46(C), pages 279-294.
    12. repec:diw:diwwpp:dp1318 is not listed on IDEAS
    13. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    14. Yang, Jun & Yang, Dingjian & Cheng, Jixin, 2024. "The non-rivalry of data, directed technical change and the environment: A theoretical study incorporating data as a production factor," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 417-448.
    15. Oscar Afonso & Ana Catarina Afonso, 2015. "Endogenous Growth Effects of Environmental Policies," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 62(5), pages 607-629, December.
    16. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stephane, 2012. "How inertia and limited potentials affect the timing of sectoral abatements in optimal climate policy," Policy Research Working Paper Series 6154, The World Bank.
    17. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    18. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    19. Schmidt, Robert C. & Marschinski, Robert, 2009. "A model of technological breakthrough in the renewable energy sector," Ecological Economics, Elsevier, vol. 69(2), pages 435-444, December.
    20. Xiao Yu & Yingdong Xu & Meng Sun & Yanzhe Zhang, 2021. "The Green-Innovation-Inducing Effect of a Unit Progressive Carbon Tax," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    21. Acemoglu, Daron & Rafey, Will, 2023. "Mirage on the horizon: Geoengineering and carbon taxation without commitment," Journal of Public Economics, Elsevier, vol. 219(C).
    22. Rozenberg, Julie & Vogt-Schilb, Adrien & Hallegatte, Stephane, 2014. "Transition to clean capital, irreversible investment and stranded assets," Policy Research Working Paper Series 6859, The World Bank.
    23. Rob Aalbers & Victoria Shestalova & Viktoria Kocsis, 2012. "Innovation policy for directing technical change in the power sector," CPB Discussion Paper 223, CPB Netherlands Bureau for Economic Policy Analysis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03403611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.