IDEAS home Printed from https://ideas.repec.org/p/ags/feemth/281286.html
   My bibliography  Save this paper

Capital Accumulation, GreeParadox, and Stranded Assets: An Endogenous Growth Perspective

Author

Listed:
  • Jin, Wei
  • Zhang, ZhongXiang

Abstract

The existing studies on Green Paradox and stranded assets focus on dirty exhaustible assets (fossil fuel reserves) and show that environmental regulations, by changing the costs of dirty inputs relative to clean ones, lead to replacements of the former by the latter and stranding of dirty assets due to perfect substitution. It, in turn, induces acceleration of dirty resource extractions and pollution emissions for fear of dirty assets becoming stranded - the Green Paradox effect. This paper uses an endogenous growth framework to revisit the problem of Green Paradox and stranded assets by taking a new perspective that focuses on capital accumulation with investment irreversibility. We show that if 1) direct irreversibility of investment does not rule out the indirect channel of converting dirty capital goods into clean ones through final goods allocations, and 2) interactions between dirty and clean capital as imperfect substitutes can generate reciprocal effects, then environmental regulation, through directing investment towards clean capital, does not necessarily leads to asset stranding of dirty capital. Accumulation of clean capital with a pollution-saving effect offsets the polluting impact of dirty one and leads to reversed Green Paradox. We further propose an endogenous growth mechanism through which the accumulation of both dirty and clean capital, as well as environmental improvement, can be sustained in the long run without converging to the steady state.

Suggested Citation

  • Jin, Wei & Zhang, ZhongXiang, 2019. "Capital Accumulation, GreeParadox, and Stranded Assets: An Endogenous Growth Perspective," ETA: Economic Theory and Applications 281286, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feemth:281286
    DOI: 10.22004/ag.econ.281286
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/281286/files/NDL2018-033.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.281286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Grimaud, André & Lafforgue, Gilles & Magné, Bertrand, 2011. "Climate change mitigation options and directed technical change: A decentralized equilibrium analysis," Resource and Energy Economics, Elsevier, vol. 33(4), pages 938-962.
    2. Casey B. Mulligan & Xavier Sala-i-Martin, 1993. "Transitional Dynamics in Two-Sector Models of Endogenous Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 108(3), pages 739-773.
    3. Elizabeth Baldwin & Yongyang Cai & Karlygash Kuralbayeva, 2018. "To Build or Not to Build? Capital Stocks and Climate Policy," CESifo Working Paper Series 6884, CESifo.
    4. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    5. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    6. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
    7. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    8. Moreno-Cruz, Juan B. & Smulders, Sjak, 2017. "Revisiting the economics of climate change: the role of geoengineering," Research in Economics, Elsevier, vol. 71(2), pages 212-224.
    9. Avraham Ebenstein & Maoyong Fan & Michael Greenstone & Guojun He & Peng Yin & Maigeng Zhou, 2015. "Growth, Pollution, and Life Expectancy: China from 1991-2012," American Economic Review, American Economic Association, vol. 105(5), pages 226-231, May.
    10. Bovenberg, A Lans & Smulders, Sjak A, 1996. "Transitional Impacts of Environmental Policy in an Endogenous Growth Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(4), pages 861-893, November.
    11. Jin, Wei & Zhang, ZhongXiang, 2016. "On the mechanism of international technology diffusion for energy technological progress," Resource and Energy Economics, Elsevier, vol. 46(C), pages 39-61.
    12. Tahvonen, Olli & Salo, Seppo, 2001. "Economic growth and transitions between renewable and nonrenewable energy resources," European Economic Review, Elsevier, vol. 45(8), pages 1379-1398, August.
    13. Strulik, Holger & Trimborn, Timo, 2010. "Anticipated tax reforms and temporary tax cuts: A general equilibrium analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2141-2158, October.
    14. van der Zwaan, Bob & Gerlagh, Reyer, 2008. "The Economics of Geological CO2 Storage and Leakage," Climate Change Modelling and Policy Working Papers 6372, Fondazione Eni Enrico Mattei (FEEM).
    15. Kolstad, Charles D., 1996. "Fundamental irreversibilities in stock externalities," Journal of Public Economics, Elsevier, vol. 60(2), pages 221-233, May.
    16. Trimborn, Timo & Koch, Karl-Josef & Steger, Thomas M., 2008. "Multidimensional Transitional Dynamics: A Simple Numerical Procedure," Macroeconomic Dynamics, Cambridge University Press, vol. 12(3), pages 301-319, June.
    17. Ruiz-Tamarit, José Ramón, 2008. "The closed-form solution for a family of four-dimension nonlinear MHDS," Journal of Economic Dynamics and Control, Elsevier, vol. 32(3), pages 1000-1014, March.
    18. Nordhaus, William D, 1991. "To Slow or Not to Slow: The Economics of the Greenhouse Effect," Economic Journal, Royal Economic Society, vol. 101(407), pages 920-937, July.
    19. Pindyck, Robert S., 2000. "Irreversibilities and the timing of environmental policy," Resource and Energy Economics, Elsevier, vol. 22(3), pages 233-259, July.
    20. André, Francisco J. & Smulders, Sjak, 2014. "Fueling growth when oil peaks: Directed technological change and the limits to efficiency," European Economic Review, Elsevier, vol. 69(C), pages 18-39.
    21. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    22. Pindyck, Robert S, 1991. "Irreversibility, Uncertainty, and Investment," Journal of Economic Literature, American Economic Association, vol. 29(3), pages 1110-1148, September.
    23. Hart, Rob, 2004. "Growth, environment and innovation--a model with production vintages and environmentally oriented research," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1078-1098, November.
    24. Grossmann, Volker & Steger, Thomas & Trimborn, Timo, 2013. "Dynamically optimal R&D subsidization," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 516-534.
    25. Frederick Ploeg, 2018. "The safe carbon budget," Climatic Change, Springer, vol. 147(1), pages 47-59, March.
    26. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    27. Stern, David I. & Common, Michael S., 2001. "Is There an Environmental Kuznets Curve for Sulfur?," Journal of Environmental Economics and Management, Elsevier, vol. 41(2), pages 162-178, March.
    28. Mohtadi, Hamid, 1996. "Environment, growth, and optimal policy design," Journal of Public Economics, Elsevier, vol. 63(1), pages 119-140, December.
    29. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    30. Smulders, Sjak & Tsur, Yacov & Zemel, Amos, 2012. "Announcing climate policy: Can a green paradox arise without scarcity?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 364-376.
    31. Andreoni, James & Levinson, Arik, 2001. "The simple analytics of the environmental Kuznets curve," Journal of Public Economics, Elsevier, vol. 80(2), pages 269-286, May.
    32. Larry E. Jones & Rodolfo E. Manuelli, 2001. "Endogenous Policy Choice: The Case of Pollution and Growth," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 4(2), pages 369-405, July.
    33. Pfeiffer, Alexander & Millar, Richard & Hepburn, Cameron & Beinhocker, Eric, 2016. "The ‘2°C capital stock’ for electricity generation: Committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy," Applied Energy, Elsevier, vol. 179(C), pages 1395-1408.
    34. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    35. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2016. "Climate tipping points and solar geoengineering," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 19-45.
    36. Gerard van der Meijden & Sjak Smulders, 2017. "Carbon Lock†In: The Role Of Expectations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(4), pages 1371-1415, November.
    37. Moreno-Cruz, Juan B., 2015. "Mitigation and the geoengineering threat," Resource and Energy Economics, Elsevier, vol. 41(C), pages 248-263.
    38. Cassou, Steven P. & Hamilton, Stephen F., 2004. "The transition from dirty to clean industries: optimal fiscal policy and the environmental Kuznets curve," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1050-1077, November.
    39. Juan Moreno-Cruz & David Keith, 2013. "Climate policy under uncertainty: a case for solar geoengineering," Climatic Change, Springer, vol. 121(3), pages 431-444, December.
    40. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    41. Ngo Van LONG, 2014. "The Green Paradox under Imperfect Substitutability between Clean and Dirty Fuels," Cahiers de recherche 02-2014, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    42. Sjak Smulders & Lucas Bretschger & Hannes Egli, 2011. "Economic Growth and the Diffusion of Clean Technologies: Explaining Environmental Kuznets Curves," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(1), pages 79-99, May.
    43. Frederick Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 283-311, February.
    44. Caballe, Jordi & Santos, Manuel S, 1993. "On Endogenous Growth with Physical and Human Capital," Journal of Political Economy, University of Chicago Press, vol. 101(6), pages 1042-1067, December.
    45. Schou, Poul, 2002. " When Environmental Policy Is Superfluous: Growth and Polluting Resources," Scandinavian Journal of Economics, Wiley Blackwell, vol. 104(4), pages 605-620, December.
    46. Rebelo, Sergio, 1991. "Long-Run Policy Analysis and Long-Run Growth," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 500-521, June.
    47. Ulph, Alistair & Ulph, David, 1997. "Global Warming, Irreversibility and Learning," Economic Journal, Royal Economic Society, vol. 107(442), pages 636-650, May.
    48. Tsur, Yacov & Zemel, Amos, 2005. "Scarcity, growth and R&D," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 484-499, May.
    49. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    50. Di Maria, Corrado & Valente, Simone, 2008. "Hicks meets Hotelling: the direction of technical change in capital–resource economies," Environment and Development Economics, Cambridge University Press, vol. 13(6), pages 691-717, December.
    51. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, Oxford University Press, vol. 110(2), pages 353-377.
    52. Selden Thomas M. & Song Daqing, 1994. "Environmental Quality and Development: Is There a Kuznets Curve for Air Pollution Emissions?," Journal of Environmental Economics and Management, Elsevier, vol. 27(2), pages 147-162, September.
    53. Hartman, Richard & Kwon, O-Sung, 2005. "Sustainable growth and the environmental Kuznets curve," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1701-1736, October.
    54. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    55. Peretto, Pietro F., 2009. "Energy taxes and endogenous technological change," Journal of Environmental Economics and Management, Elsevier, vol. 57(3), pages 269-283, May.
    56. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    57. Grimaud, Andre & Rouge, Luc, 2003. "Non-renewable resources and growth with vertical innovations: optimum, equilibrium and economic policies," Journal of Environmental Economics and Management, Elsevier, vol. 45(2, Supple), pages 433-453, March.
    58. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    59. Lans Bovenberg, A. & Smulders, Sjak, 1995. "Environmental quality and pollution-augmenting technological change in a two-sector endogenous growth model," Journal of Public Economics, Elsevier, vol. 57(3), pages 369-391, July.
    60. Olli Tahvonen, 1997. "Fossil Fuels, Stock Externalities, and Backstop Technology," Canadian Journal of Economics, Canadian Economics Association, vol. 30(4), pages 855-874, November.
    61. Daron Acemoglu & Philippe Aghion & David Hémous, 2014. "The environment and directed technical change in a North–South model," Oxford Review of Economic Policy, Oxford University Press, vol. 30(3), pages 513-530.
    62. van Zon, Adriaan & Yetkiner, I. Hakan, 2003. "An endogenous growth model with embodied energy-saving technical change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 81-103, February.
    63. Hayashi, Fumio, 1982. "Tobin's Marginal q and Average q: A Neoclassical Interpretation," Econometrica, Econometric Society, vol. 50(1), pages 213-224, January.
    64. Poul Schou, 2000. "Polluting Non-Renewable Resources and Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 16(2), pages 211-227, June.
    65. Herzog, Howard J., 2011. "Scaling up carbon dioxide capture and storage: From megatons to gigatons," Energy Economics, Elsevier, vol. 33(4), pages 597-604, July.
    66. Selden Thomas M. & Song Daqing, 1995. "Neoclassical Growth, the J Curve for Abatement, and the Inverted U Curve for Pollution," Journal of Environmental Economics and Management, Elsevier, vol. 29(2), pages 162-168, September.
    67. Susmita Dasgupta & Benoit Laplante & Hua Wang & David Wheeler, 2002. "Confronting the Environmental Kuznets Curve," Journal of Economic Perspectives, American Economic Association, vol. 16(1), pages 147-168, Winter.
    68. Hirtle, Beverly, 2009. "Credit derivatives and bank credit supply," Journal of Financial Intermediation, Elsevier, vol. 18(2), pages 125-150, April.
    69. Lucas, Robert Jr., 1988. "On the mechanics of economic development," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 3-42, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Jin & Rick van der Ploeg & Lin Zhang, 2020. "Do We Still Need Carbon-Intensive Capital When Transitioning to a Green Economy?," CESifo Working Paper Series 8745, CESifo.
    2. Wei Jin & ZhongXiang Zhang, 2016. "China's pursuit of environmentally sustainable development: Harnessing the new engine of technological innovation," CCEP Working Papers 1601, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    3. Santiago J. Rubio, Jose L. Garcia and Jose L. Hueso, 2009. "Neoclassical Growth, Environment and Technological Change: The Environmental Kuznets Curve," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    4. Sabrina Auci & Giovanni Trovato, 2018. "The environmental Kuznets curve within European countries and sectors: greenhouse emission, production function and technology," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(3), pages 895-915, December.
    5. Ryo Horii & Masako Ikefuji, 2014. "Environment and Growth," DSSR Discussion Papers 21, Graduate School of Economics and Management, Tohoku University.
    6. J. Aznar-Márquez & J. R. Ruiz-Tamarit, "undated". "Non-Catastrophic Endogenous Growth and the Environmental Kuznets Curve," Working Papers 2004-15, FEDEA.
    7. Ricci, Francesco, 2007. "Channels of transmission of environmental policy to economic growth: A survey of the theory," Ecological Economics, Elsevier, vol. 60(4), pages 688-699, February.
    8. J., AZNAR-MARQUEZ & Jose-Ramon, RUIZ-TAMARIT, 2005. "Demographic Transition Environmental Concern and the Kuznets Curve," Discussion Papers (ECON - Département des Sciences Economiques) 2005001, Université catholique de Louvain, Département des Sciences Economiques.
    9. Kijima, Masaaki & Nishide, Katsumasa & Ohyama, Atsuyuki, 2010. "Economic models for the environmental Kuznets curve: A survey," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1187-1201, July.
    10. Evangelos V. Dioikitopoulos & Sugata Ghosh & Eugenia Vella, 2016. "Technological Progress, Time Perception and Environmental Sustainability," Working Papers 2016002, The University of Sheffield, Department of Economics.
    11. Smulders, Sjak & Withagen, Cees, 2012. "Green growth -- lessons from growth theory," Policy Research Working Paper Series 6230, The World Bank.
    12. Wei Jin & ZhongXiang Zhang, 2014. "From Energy-intensive to Innovation-led Growth: On the Transition Dynamics of China’s Economy," Working Papers 2014.100, Fondazione Eni Enrico Mattei.
    13. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve: An Envelope of Technological Progress," MPRA Paper 28092, University Library of Munich, Germany, revised May 2010.
    14. Sjak Smulders & Michael Toman & Cees Withagen, 2014. "Growth Theory and “Green Growthâ€," OxCarre Working Papers 135, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    15. Neophyta Empora, 2017. "Air pollution spillovers and U.S. state productivity growth," University of Cyprus Working Papers in Economics 06-2017, University of Cyprus Department of Economics.
    16. Valeria Costantini & Chiara Martini, 2010. "A Modified Environmental Kuznets Curve for sustainable development assessment using panel data," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 84-122.
    17. Wu, Tao & Zhang, Ning & Gui, Lin & Wu, Wenjie, 2018. "Sustainable endogenous growth model of multiple regions: Reconciling OR and economic perspectives," European Journal of Operational Research, Elsevier, vol. 269(1), pages 218-226.
    18. Marzio Galeotti, 2003. "Environment and Economic Growth: Is Technical Change the Key to Decoupling?," Working Papers 2003.90, Fondazione Eni Enrico Mattei.
    19. Cameron Hepburn & Alex Bowen, 2013. "Prosperity with growth: economic growth, climate change and environmental limits," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 29, pages 617-638, Edward Elgar Publishing.
    20. Bretschger, Lucas & Smulders, Sjak, 2012. "Sustainability and substitution of exhaustible natural resources," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 536-549.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemth:281286. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.