IDEAS home Printed from https://ideas.repec.org/r/oup/restud/v72y2005i4p1107-1125.html
   My bibliography  Save this item

Estimation and Testing of Forecast Rationality under Flexible Loss

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
  2. Stan Hurn & Jing Tian & Lina Xu, 2021. "Assessing the Informational Content of Official Australian Bureau of Meteorology Forecasts of Wind Speed," The Economic Record, The Economic Society of Australia, vol. 97(319), pages 525-547, December.
  3. Lee, Tae-Hwy & Ullah, Aman & Wang, He, 2018. "The second-order bias of quantile estimators," Economics Letters, Elsevier, vol. 173(C), pages 143-147.
  4. Aretz, Kevin & Bartram, Söhnke M. & Pope, Peter F., 2011. "Asymmetric loss functions and the rationality of expected stock returns," International Journal of Forecasting, Elsevier, vol. 27(2), pages 413-437.
  5. Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2015. "Central banks’ inflation forecasts under asymmetric loss: Evidence from four Latin-American countries," Economics Letters, Elsevier, vol. 129(C), pages 66-70.
  6. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
  7. Pierdzioch, Christian & Rülke, Jan-Christoph, 2013. "Do inflation targets anchor inflation expectations?," Economic Modelling, Elsevier, vol. 35(C), pages 214-223.
  8. Matei Demetrescu & Mu-Chun Wang, 2014. "Incorporating Asymmetric Preferences into Fan Charts and Path Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 287-297, April.
  9. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Christian Pierdzioch, 2021. "El Niño, La Niña, and the Forecastability of the Realized Variance of Heating Oil Price Movements," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
  10. Christian Pierdzioch & Jan-Christoph Rülke & Georg Stadtmann, 2013. "Oil price forecasting under asymmetric loss," Applied Economics, Taylor & Francis Journals, vol. 45(17), pages 2371-2379, June.
  11. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
  12. Charles F. Manski, 2018. "Survey Measurement of Probabilistic Macroeconomic Expectations: Progress and Promise," NBER Macroeconomics Annual, University of Chicago Press, vol. 32(1), pages 411-471.
  13. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
  14. Jens J. Krüger, 2014. "A multivariate evaluation of German output growth and inflation forecasts," Economics Bulletin, AccessEcon, vol. 34(3), pages 1410-1418.
  15. Rangan Gupta & Yuvana Jaichand & Christian Pierdzioch & Reneé van Eyden, 2023. "Realized Stock-Market Volatility of the United States and the Presidential Approval Rating," Mathematics, MDPI, vol. 11(13), pages 1-27, July.
  16. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
  17. Robert Krol, 2014. "Forecast Bias of Government Agencies," Cato Journal, Cato Journal, Cato Institute, vol. 34(1), pages 99-112, Winter.
  18. Christodoulakis, George & Mamatzakis, Emmanuel, 2013. "Behavioural asymmetries in the G7 foreign exchange market," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 261-270.
  19. Baghestani, Hamid & Marchon, Cassia, 2012. "An evaluation of private forecasts of interest rate targets in Brazil," Economics Letters, Elsevier, vol. 115(3), pages 352-355.
  20. Ron Alquist & Lutz Kilian, 2010. "What do we learn from the price of crude oil futures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
  21. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
  22. Martin Ellison & Thomas J. Sargent, 2012. "A Defense Of The Fomc," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(4), pages 1047-1065, November.
  23. Hitesh Doshi & Kris Jacobs & Rui Liu, 2021. "Information in the Term Structure: A Forecasting Perspective," Management Science, INFORMS, vol. 67(8), pages 5255-5277, August.
  24. Fritsche, Ulrich & Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2015. "Forecasting the Brazilian real and the Mexican peso: Asymmetric loss, forecast rationality, and forecaster herding," International Journal of Forecasting, Elsevier, vol. 31(1), pages 130-139.
  25. Afees A. Salisu & Christian Pierdzioch & Rangan Gupta & Reneé van Eyden, 2023. "Climate risks and U.S. stock‐market tail risks: A forecasting experiment using over a century of data," International Review of Finance, International Review of Finance Ltd., vol. 23(2), pages 228-244, June.
  26. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
  27. Xavier D'Haultfoeuille & Christophe Gaillac & Arnaud Maurel, 2018. "Rationalizing Rational Expectations? Tests and Deviations," NBER Working Papers 25274, National Bureau of Economic Research, Inc.
  28. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
  29. Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009. "Information in the Revision Process of Real-Time Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.
  30. Mamatzakis, Emmanuel & Tsionas, Mike G., 2015. "How are market preferences shaped? The case of sovereign debt of stressed euro-area countries," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 106-116.
  31. Tsuchiya, Yoichi, 2023. "Assessing the World Bank’s growth forecasts," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 64-84.
  32. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
  33. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  34. Chatagny, Florian & Siliverstovs, Boriss, 2015. "Evaluating rationality of level and growth rate forecasts of direct tax revenues under flexible loss function: Evidence from Swiss cantons," Economics Letters, Elsevier, vol. 134(C), pages 65-68.
  35. Mustanen, Dmitri & Maaitah, Ahmad & Mishra, Tapas & Parhi, Mamata, 2022. "The power of investors’ optimism and pessimism in oil market forecasting," Energy Economics, Elsevier, vol. 114(C).
  36. Eichler, M. & Grothe, O. & Manner, H. & Türk, D.D.T., 2012. "Modeling spike occurrences in electricity spot prices for forecasting," Research Memorandum 029, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  37. Marcella Niglio, 2007. "Multi-step forecasts from threshold ARMA models using asymmetric loss functions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(3), pages 395-410, November.
  38. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2011. "Forecast Evaluation in Call Centers: Combined Forecasts, Flexible Loss Functions and Economic Criteria," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1109, Universitá degli Studi di Milano.
  39. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  40. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
  41. Seth Pruitt, 2012. "Uncertainty Over Models and Data: The Rise and Fall of American Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(2‐3), pages 341-365, March.
  42. Dennis Novy & Alan M. Taylor, 2020. "Trade and Uncertainty," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 749-765, October.
  43. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
  44. Chan, Kam C. & Chan, Leo H. & Nguyen, Chi M., 2020. "Forecasting oil futures market volatility in a financialized world: Why speculative activities matter," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
  45. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019. "Statistical and economic evaluation of time series models for forecasting arrivals at call centers," Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
  46. Veress, Aron & Kaiser, Lars, 2017. "Forecasting quality of professionals: Does affiliation matter?," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 159-168.
  47. Baghestani, Hamid & Khallaf, Ashraf, 2012. "Predictions of growth in U.S. corporate profits: Asymmetric vs. symmetric loss," International Review of Economics & Finance, Elsevier, vol. 22(1), pages 222-229.
  48. Hamid Baghestani, 2014. "On the loss structure of federal reserve forecasts of output growth," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 38(3), pages 518-527, July.
  49. Krüger, Jens J. & Hoss, Julian, 2012. "German business cycle forecasts, asymmetric loss and financial variables," Economics Letters, Elsevier, vol. 114(3), pages 284-287.
  50. Tae-Hwy Lee & Yiyao Wang, 2015. "Finding SPF Percentiles Closest to Greenbook," Working Papers 201503, University of California at Riverside, Department of Economics.
  51. Kontogeorgos, Georgios & Lambrias, Kyriacos, 2019. "An analysis of the Eurosystem/ECB projections," Working Paper Series 2291, European Central Bank.
  52. Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Energies, MDPI, vol. 14(23), pages 1-18, December.
  53. Tsuchiya, Yoichi, 2016. "Asymmetric loss and rationality of Chinese renminbi forecasts: An implication for the trade between China and the US," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 116-127.
  54. Salisu, Afees A. & Pierdzioch, Christian & Gupta, Rangan & Gabauer, David, 2022. "Forecasting stock-market tail risk and connectedness in advanced economies over a century: The role of gold-to-silver and gold-to-platinum price ratios," International Review of Financial Analysis, Elsevier, vol. 83(C).
  55. Frenkel, Michael & Rülke, Jan-Christoph & Zimmermann, Lilli, 2013. "Do private sector forecasters chase after IMF or OECD forecasts?," Journal of Macroeconomics, Elsevier, vol. 37(C), pages 217-229.
  56. Auffhammer, Maximilian, 2007. "The rationality of EIA forecasts under symmetric and asymmetric loss," Resource and Energy Economics, Elsevier, vol. 29(2), pages 102-121, May.
  57. Marinovic, Iván & Ottaviani, Marco & Sorensen, Peter, 2013. "Forecasters’ Objectives and Strategies," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 690-720, Elsevier.
  58. Capistrán, Carlos & López-Moctezuma, Gabriel, 2014. "Forecast revisions of Mexican inflation and GDP growth," International Journal of Forecasting, Elsevier, vol. 30(2), pages 177-191.
  59. Michael Frenkel & Jin-Kyu Jung & Jan-Christoph Rülke, 2017. "Rationalizing the Bias in Central Banks' Interest Rate Projections," WHU Working Paper Series - Economics Group 17-03, WHU - Otto Beisheim School of Management.
  60. Emmanuel C. Mamatzakis & Mike G. Tsionas, 2020. "Revealing forecaster's preferences: A Bayesian multivariate loss function approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 412-437, April.
  61. Michael Frenkel & Jin-Kyu Jung & Jan-Christoph Rülke, 2022. "Testing for the rationality of central bank interest rate forecasts," Empirical Economics, Springer, vol. 62(3), pages 1037-1078, March.
  62. Timo Dimitriadis & Andrew J. Patton & Patrick W. Schmidt, 2019. "Testing Forecast Rationality for Measures of Central Tendency," Papers 1910.12545, arXiv.org, revised Jun 2023.
  63. Christian Pierdzioch & Jan C Rülke & Georg Stadtmann, 2012. "Forecasting the Dollar/British Pound Exchange Rate: Asymmetric Loss and Forecast Rationality," Economics Bulletin, AccessEcon, vol. 32(3), pages 213-213.
  64. Patton, Andrew J. & Timmermann, Allan, 2007. "Properties of optimal forecasts under asymmetric loss and nonlinearity," Journal of Econometrics, Elsevier, vol. 140(2), pages 884-918, October.
  65. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A quantile-boosting approach to forecasting gold returns," The North American Journal of Economics and Finance, Elsevier, vol. 35(C), pages 38-55.
  66. Demetrescu, Matei & Hacıoğlu Hoke, Sinem, 2019. "Predictive regressions under asymmetric loss: Factor augmentation and model selection," International Journal of Forecasting, Elsevier, vol. 35(1), pages 80-99.
  67. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
  68. George Christodoulakis, 2012. "Conditions for rational investment short-termism," Annals of Finance, Springer, vol. 8(1), pages 15-29, February.
  69. Emilio Zanetti Chini, 2018. "Forecasters’ utility and forecast coherence," CREATES Research Papers 2018-23, Department of Economics and Business Economics, Aarhus University.
  70. Dean Croushore & Simon van Norden, 2014. "Fiscal policy: ex ante and ex post," Working Papers 14-22, Federal Reserve Bank of Philadelphia.
  71. Auffhammer, Maximilian, 2005. "The Rationality of EIA Forecasts under Symmetric and Asymmetric Loss," CUDARE Working Papers 25017, University of California, Berkeley, Department of Agricultural and Resource Economics.
  72. Bhattacharya, Debopam, 2013. "Evaluating treatment protocols using data combination," Journal of Econometrics, Elsevier, vol. 173(2), pages 160-174.
  73. Berge, Travis J., 2018. "Understanding survey-based inflation expectations," International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
  74. Wang, Yiyao & Lee, Tae-Hwy, 2014. "Asymmetric loss in the Greenbook and the Survey of Professional Forecasters," International Journal of Forecasting, Elsevier, vol. 30(2), pages 235-245.
  75. Kostas Mouratidis & Dimitris Kenourgios & Aris Samitas, 2010. "Evaluating currency crisis:A multivariate Markov switching approach," Working Papers 2010018, The University of Sheffield, Department of Economics, revised Oct 2010.
  76. Christian Pierdzioch & Jan-Christoph Rülke & Georg Stadtmann, 2012. "Exchange-rate forecasts and asymmetric loss: empirical evidence for the yen/dollar exchange rate," Applied Economics Letters, Taylor & Francis Journals, vol. 19(18), pages 1759-1763, December.
  77. Carlos Capistrán & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2‐3), pages 365-396, March.
  78. Krol, Robert, 2013. "Evaluating state revenue forecasting under a flexible loss function," International Journal of Forecasting, Elsevier, vol. 29(2), pages 282-289.
  79. E. Mamatzakis, 2014. "Revealing asymmetries in the loss function of WTI oil futures market," Empirical Economics, Springer, vol. 47(2), pages 411-426, September.
  80. George Christodoulakis & Emmanuel Mamatzakis, 2008. "Asymmetries in the sport-forward G10 exchange rates: an answer to an old puzzle?," Discussion Paper Series 2008_12, Department of Economics, University of Macedonia, revised Sep 2008.
  81. Michael R Frenkel & Jan C Rülke, 2013. "Is the ECB's monetary benchmark still alive?," Economics Bulletin, AccessEcon, vol. 33(2), pages 1204-1214.
  82. Kajal Lahiri & Fushang Liu, 2009. "On the Use of Density Forecasts to Identify Asymmetry in Forecasters' Loss Functions," Discussion Papers 09-03, University at Albany, SUNY, Department of Economics.
  83. Jörg Döpke & Ulrich Fritsche & Boriss Siliverstovs, 2010. "Evaluating German business cycle forecasts under an asymmetric loss function," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(1), pages 1-18.
  84. Hamid Baghestani & Cassia Marchon, 2015. "On the accuracy of private forecasts of inflation and growth in Brazil," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(2), pages 370-381, April.
  85. Philip Hans Franses & Rianne Legerstee & Richard Paap, 2017. "Estimating loss functions of experts," Applied Economics, Taylor & Francis Journals, vol. 49(4), pages 386-396, January.
  86. Brownlees, Christian T. & Gallo, Giampiero M., 2011. "Shrinkage estimation of semiparametric multiplicative error models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 365-378, April.
  87. Wieland, Volker & Wolters, Maik, 2013. "Forecasting and Policy Making," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 239-325, Elsevier.
  88. Breitung, Jörg & Schmeling, Maik, 2013. "Quantifying survey expectations: What’s wrong with the probability approach?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 142-154.
  89. Kuethe, Todd H. & Regmi, Hari, 2023. "An Evaluation of Congressional Budget Office’s Baseline Projections of USDA Mandatory Farm and Nutrition Programs," 2023 Annual Meeting, July 23-25, Washington D.C. 335690, Agricultural and Applied Economics Association.
  90. Lutz Kilian & Simone Manganelli, 2008. "The Central Banker as a Risk Manager: Estimating the Federal Reserve's Preferences under Greenspan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(6), pages 1103-1129, September.
  91. Clements, Michael P, 2006. "Internal consistency of survey respondents.forecasts : Evidence based on the Survey of Professional Forecasters," The Warwick Economics Research Paper Series (TWERPS) 772, University of Warwick, Department of Economics.
  92. Ulrich Fritsche & Christian Pierdzioch & Jan-Christoph Ruelke & Georg Stadtmann, 2012. "Forecasting the Euro: Do Forecasters Have an Asymmetric Loss Function?," Macroeconomics and Finance Series 201201, University of Hamburg, Department of Socioeconomics.
  93. Ulu, Yasemin, 2007. "Optimal prediction under LINLIN loss: Empirical evidence," International Journal of Forecasting, Elsevier, vol. 23(4), pages 707-715.
  94. Valentina Corradi & Sainan Jin & Norman R. Swanson, 2023. "Robust forecast superiority testing with an application to assessing pools of expert forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 596-622, June.
  95. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2011. "Forecast Evaluation in Call Centers: Combined Forecasts, Flexible Loss Functions and Economic Criteria," Working Papers 20110301, Università degli Studi di Milano-Bicocca, Dipartimento di Statistica.
  96. Schnatz, Bernd & D'Agostino, Antonello, 2012. "Survey-based nowcasting of US growth: a real-time forecast comparison over more than 40 years," Working Paper Series 1455, European Central Bank.
  97. Christian Pierdzioch & Marian Risse & Sebastian Rohloff, 2016. "Fluctuations of the real exchange rate, real interest rates, and the dynamics of the price of gold in a small open economy," Empirical Economics, Springer, vol. 51(4), pages 1481-1499, December.
  98. Ulu, Yasemin, 2013. "Multivariate test for forecast rationality under asymmetric loss functions: Recent evidence from MMS survey of inflation–output forecasts," Economics Letters, Elsevier, vol. 119(2), pages 168-171.
  99. Dean Croushore & Simon van Norden, 2018. "Fiscal Forecasts at the FOMC: Evidence from the Greenbooks," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 933-945, December.
  100. Breuer Christian, 2015. "On the Rationality of Medium-Term Tax Revenue Forecasts: Evidence from Germany," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 235(1), pages 22-40, February.
  101. Ulrich Fritsche & Christian Pierdzioch & Jan-Christoph R�lke & Georg Stadtmann, 2014. "A Note on Forecasting the Euro: Do Forecasters Have an Asymmetric Loss Function?," International Economic Journal, Taylor & Francis Journals, vol. 28(2), pages 333-343, June.
  102. Rülke, Jan-Christoph & Silgoner, Maria & Wörz, Julia, 2016. "Herding behavior of business cycle forecasters," International Journal of Forecasting, Elsevier, vol. 32(1), pages 23-33.
  103. Hamid Baghestani, 2013. "Evaluating Federal Reserve predictions of growth in consumer spending," Applied Economics, Taylor & Francis Journals, vol. 45(13), pages 1637-1646, May.
  104. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
  105. Yen, Yu-Min & Yen, Tso-Jung, 2021. "Testing forecast accuracy of expectiles and quantiles with the extremal consistent loss functions," International Journal of Forecasting, Elsevier, vol. 37(2), pages 733-758.
  106. Graham Elliott & Allan Timmermann, 2016. "Forecasting in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
  107. Alexander, Marcus & Christakis, Nicholas A., 2008. "Bias and asymmetric loss in expert forecasts: A study of physician prognostic behavior with respect to patient survival," Journal of Health Economics, Elsevier, vol. 27(4), pages 1095-1108, July.
  108. de Mendonça, Helder Ferreira & de Deus, Joseph David Barroso Vasconcelos, 2019. "Central bank forecasts and private expectations: An empirical assessment from three emerging economies," Economic Modelling, Elsevier, vol. 83(C), pages 234-244.
  109. Young Bin Ahn & Yoichi Tsuchiya, 2022. "Consumer’s perceived and expected inflation in Japan—irrationality or asymmetric loss?," Empirical Economics, Springer, vol. 63(3), pages 1247-1292, September.
  110. Arai, Natsuki, 2020. "Investigating the inefficiency of the CBO’s budgetary projections," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1290-1300.
  111. Francis X. Diebold & Minchul Shin, 2017. "Assessing point forecast accuracy by stochastic error distance," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 588-598, October.
  112. Demirer, Riza & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2019. "Time-varying risk aversion and realized gold volatility," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
  113. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020. "Proper scoring rules for evaluating asymmetry in density forecasting," Papers 2006.11265, arXiv.org, revised Sep 2020.
  114. Ulrich Fritsche & Artur Tarassow, 2017. "Vergleichende Evaluation der Konjunkturprognosen des Instituts für Makroökonomie und Konjunkturforschung an der Hans-Böckler-Stiftung für den Zeitraum 2005-2014," IMK Studies 54-2017, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
  115. Pierdzioch, Christian & Reid, Monique B. & Gupta, Rangan, 2016. "Forecasting the South African inflation rate: On asymmetric loss and forecast rationality," Economic Systems, Elsevier, vol. 40(1), pages 82-92.
  116. Mouratidis, Kostas, 2008. "Evaluating currency crises: A Bayesian Markov switching approach," Journal of Macroeconomics, Elsevier, vol. 30(4), pages 1688-1711, December.
  117. Sun, Yuying & Wang, Shouyang & Zhang, Xun, 2018. "How efficient are China's macroeconomic forecasts? Evidences from a new forecasting evaluation approach," Economic Modelling, Elsevier, vol. 68(C), pages 506-513.
  118. Behrens, Christoph & Pierdzioch, Christian & Risse, Marian, 2018. "Testing the optimality of inflation forecasts under flexible loss with random forests," Economic Modelling, Elsevier, vol. 72(C), pages 270-277.
  119. Jalles, João Tovar, 2017. "On the rationality and efficiency of inflation forecasts: Evidence from advanced and emerging market economies," Research in International Business and Finance, Elsevier, vol. 40(C), pages 175-189.
  120. Alp, Tansel & Demetrescu, Matei, 2010. "Joint forecasts of Dow Jones stocks under general multivariate loss function," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2360-2371, November.
  121. Vasconcelos de Deus, Joseph David Barroso & de Mendonça, Helder Ferreira, 2017. "Fiscal forecasting performance in an emerging economy: An empirical assessment of Brazil," Economic Systems, Elsevier, vol. 41(3), pages 408-419.
  122. Bastianin, Andrea & Manera, Matteo & Markandya, Anil & Scarpa, Elisa, 2011. "Oil Price Forecast Evaluation with Flexible Loss Functions," Energy: Resources and Markets 120042, Fondazione Eni Enrico Mattei (FEEM).
  123. Hubbs, Todd & Kuethe, Todd H., 2017. "Are USDA Livestock Price Forecasts Actually Biased? Empirical Tests under Asymmetric Loss," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258235, Agricultural and Applied Economics Association.
  124. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
  125. Bonato, Matteo & Çepni, Oğuzhan & Gupta, Rangan & Pierdzioch, Christian, 2021. "Do oil-price shocks predict the realized variance of U.S. REITs?," Energy Economics, Elsevier, vol. 104(C).
  126. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and state-level stock market realized volatility," Journal of Financial Markets, Elsevier, vol. 66(C).
  127. Lieli, Robert P. & Stinchcombe, Maxwell B. & Grolmusz, Viola M., 2019. "Unrestricted and controlled identification of loss functions: Possibility and impossibility results," International Journal of Forecasting, Elsevier, vol. 35(3), pages 878-890.
  128. Conrad, Christian, 2017. "When does information on forecast variance improve the performance of a combined forecast?," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168200, Verein für Socialpolitik / German Economic Association.
  129. Christoph Behrens, 2019. "A Nonparametric Evaluation of the Optimality of German Export and Import Growth Forecasts under Flexible Loss," Economies, MDPI, vol. 7(3), pages 1-23, September.
  130. Tsuchiya, Yoichi, 2015. "Herding behavior and loss functions of exchange rate forecasters over interventions and financial crises," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 266-276.
  131. Rülke, Jan-Christoph & Pierdzioch, Christian, 2014. "Government Forecasts of Budget Balances Under Asymmetric Loss: International Evidence," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100317, Verein für Socialpolitik / German Economic Association.
  132. Mamatzakis, E. & Koutsomanoli-Filippaki, A., 2014. "Testing the rationality of DOE's energy price forecasts under asymmetric loss preferences," Energy Policy, Elsevier, vol. 68(C), pages 567-575.
  133. Andrew Patton & Allan Timmermann, 2012. "Forecast Rationality Tests Based on Multi-Horizon Bounds," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 1-17.
  134. G. Kontogeorgos & K. Lambrias, 2022. "Evaluating the Eurosystem/ECB staff macroeconomic projections: The first 20 years," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 213-229, March.
  135. Timmermann, Allan & Zhu, Yinchu, 2019. "Comparing Forecasting Performance with Panel Data," CEPR Discussion Papers 13746, C.E.P.R. Discussion Papers.
  136. Tae-Hwy Lee & Tao Wang, 2023. "Estimation and Testing of Forecast Rationality with Many Moments," Papers 2309.09481, arXiv.org.
  137. Higgins, Matthew L. & Mishra, Sagarika, 2014. "State dependent asymmetric loss and the consensus forecast of real U.S. GDP growth," Economic Modelling, Elsevier, vol. 38(C), pages 627-632.
  138. G. A. Christodoulakis & E. C. Mamatzakis, 2009. "Assessing the prudence of economic forecasts in the EU," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 583-606.
  139. Christodoulakis, George, 2020. "Estimating the term structure of commodity market preferences," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1146-1163.
  140. Michael P Clements, 2014. "Assessing the Evidence of Macro- Forecaster Herding: Forecasts of Inflation and Output Growth," ICMA Centre Discussion Papers in Finance icma-dp2014-12, Henley Business School, University of Reading.
  141. Vigne, Samuel A. & Lucey, Brian M. & O’Connor, Fergal A. & Yarovaya, Larisa, 2017. "The financial economics of white precious metals — A survey," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 292-308.
  142. Yoichi Tsuchiya, 2022. "Evaluating plant managers’ production plans over business cycles: asymmetric loss and rationality," SN Business & Economics, Springer, vol. 2(8), pages 1-29, August.
  143. Konstantin A. Kholodilin & Boriss Siliverstovs, 2009. "Do forecasters inform or reassure?," KOF Working papers 09-215, KOF Swiss Economic Institute, ETH Zurich.
  144. Julieta Caunedo & Riccardo Dicecio & Ivana Komunjer & Michael T. Owyang, 2020. "Asymmetry, Complementarities, and State Dependence in Federal Reserve Forecasts," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(1), pages 205-228, February.
  145. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "A boosting approach to forecasting the volatility of gold-price fluctuations under flexible loss," Resources Policy, Elsevier, vol. 47(C), pages 95-107.
  146. repec:pen:papers:14-011 is not listed on IDEAS
  147. Ghysels, Eric & Wright, Jonathan H., 2009. "Forecasting Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 504-516.
  148. Tsuchiya, Yoichi, 2016. "Assessing macroeconomic forecasts for Japan under an asymmetric loss function," International Journal of Forecasting, Elsevier, vol. 32(2), pages 233-242.
  149. Tsuchiya, Yoichi, 2012. "Evaluating Japanese corporate executives’ forecasts under an asymmetric loss function," Economics Letters, Elsevier, vol. 116(3), pages 601-603.
  150. Ivana Komunjer & Michael T. Owyang, 2012. "Multivariate Forecast Evaluation and Rationality Testing," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1066-1080, November.
  151. Christian Pierdzioch & Jan-Christoph Rülke & Peter Tillmann, 2013. "Using forecasts to uncover the loss function of FOMC members," MAGKS Papers on Economics 201302, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
  152. Andrew C. Chang & Trace J. Levinson, 2023. "Raiders of the lost high‐frequency forecasts: New data and evidence on the efficiency of the Fed's forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 88-104, January.
  153. Kevin Aretz & David A. Peel, 2010. "Spreads versus professional forecasters as predictors of future output change," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(6), pages 517-522.
  154. George A. Christodoulakis & Emmanuel C. Mamatzakis, 2008. "An assessment of the EU growth forecasts under asymmetric preferences," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 483-492.
  155. George Christodoulakis & Konstantinos Stathopoulos & Nikolaos Tessaromatis, 2012. "The term structure of loss preferences and rationality in analyst earnings forecasts," Journal of Asset Management, Palgrave Macmillan, vol. 13(5), pages 310-326, October.
  156. Michael P. Clements, 2018. "Do Macroforecasters Herd?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(2-3), pages 265-292, March.
  157. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2014. "The international business cycle and gold-price fluctuations," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 292-305.
  158. Nazaria Solferino & Robert Waldmann, 2010. "Predicting the signs of forecast errors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 476-485.
  159. Hamid Baghestani, 2022. "Mortgage rate predictability and consumer home-buying assessments," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 46(3), pages 593-603, July.
  160. Arai, Natsuki & Iizuka, Nobuo & Yamamoto, Yohei, 2022. "The Efficiency of the Government’s Revenue Projections," Discussion paper series HIAS-E-122, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
  161. José Daniel Aromí, 2021. "Large Current Account Deficits and Neglected Vulnerabilities," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 69(4), pages 597-623, December.
  162. Ashesh Rambachan, 2022. "Identifying Prediction Mistakes in Observational Data," NBER Chapters, in: Economics of Artificial Intelligence, National Bureau of Economic Research, Inc.
  163. Robert P. Lieli & Augusto Nieto-Barthaburu, 2023. "Forecasting with Feedback," Papers 2308.15062, arXiv.org, revised Jan 2024.
  164. Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2012. "On the loss function of the Bank of Canada: A note," Economics Letters, Elsevier, vol. 115(2), pages 155-159.
  165. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
  166. Deschamps, Bruno & Ioannidis, Christos, 2013. "Can rational stubbornness explain forecast biases?," Journal of Economic Behavior & Organization, Elsevier, vol. 92(C), pages 141-151.
  167. Timo Dimitriadis & Julie Schnaitmann, 2019. "Forecast Encompassing Tests for the Expected Shortfall," Papers 1908.04569, arXiv.org, revised Aug 2020.
  168. Matei Demetrescu & Christoph Roling & Anna Titova, 2021. "Reevaluating the prudence of economic forecasts in the EU: The role of instrument persistence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 151-161, January.
  169. Tobias Fissler & Hajo Holzmann, 2022. "Measurability of functionals and of ideal point forecasts," Papers 2203.08635, arXiv.org.
  170. MacDonald, Ronald & Nagayasu, Jun, 2015. "Currency forecast errors and carry trades at times of low interest rates: Evidence from survey data on the yen/dollar exchange rate," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 1-19.
  171. Huang, Rong & Pilbeam, Keith & Pouliot, William, 2022. "Are macroeconomic forecasters optimists or pessimists? A reassessment of survey based forecasts," Journal of Economic Behavior & Organization, Elsevier, vol. 197(C), pages 706-724.
  172. Tae-Hwy Lee & Yiyao Wang, 2019. "Evaluation of the Survey of Professional Forecasters in the Greenbook’s Loss Function," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 345-360, June.
  173. Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.
  174. Collin Philipps, 2022. "Interpreting Expectiles," Working Papers 2022-01, Department of Economics and Geosciences, US Air Force Academy.
  175. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
  176. Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2013. "A note on forecasting the prices of gold and silver: Asymmetric loss and forecast rationality," The Quarterly Review of Economics and Finance, Elsevier, vol. 53(3), pages 294-301.
  177. Tae-Hwy Lee & Aman Ullah & He Wang, 2023. "The Second-order Bias and Mean Squared Error of Quantile Regression Estimators," Working Papers 202313, University of California at Riverside, Department of Economics.
  178. Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2020. "Forecasting Realized Stock-Market Volatility: Do Industry Returns have Predictive Value?," Working Papers 2020107, University of Pretoria, Department of Economics.
  179. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
  180. Boero, Gianna & Smith, Jeremy & Wallis, Kenneth F., 2008. "Evaluating a three-dimensional panel of point forecasts: The Bank of England Survey of External Forecasters," International Journal of Forecasting, Elsevier, vol. 24(3), pages 354-367.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.