IDEAS home Printed from https://ideas.repec.org/p/ags/aaea17/258235.html
   My bibliography  Save this paper

Are USDA Livestock Price Forecasts Actually Biased? Empirical Tests under Asymmetric Loss

Author

Listed:
  • Hubbs, Todd
  • Kuethe, Todd H.

Abstract

No abstract is available for this item.

Suggested Citation

  • Hubbs, Todd & Kuethe, Todd H., 2017. "Are USDA Livestock Price Forecasts Actually Biased? Empirical Tests under Asymmetric Loss," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258235, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea17:258235
    DOI: 10.22004/ag.econ.258235
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/258235/files/Abstracts_17_05_23_15_10_37_95__128_174_64_53_0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.258235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(4), pages 1107-1125.
    2. Sanders, Dwight R. & Manfredo, Mark R., 2002. "Usda Production Forecasts For Pork, Beef, And Broilers: An Evaluation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 27(01), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kexin Ding & Ani L. Katchova, 2024. "Testing the optimality of USDA's WASDE forecasts under unknown loss," Agribusiness, John Wiley & Sons, Ltd., vol. 40(4), pages 846-865, October.
    2. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    3. Stan Hurn & Jing Tian & Lina Xu, 2021. "Assessing the Informational Content of Official Australian Bureau of Meteorology Forecasts of Wind Speed," The Economic Record, The Economic Society of Australia, vol. 97(319), pages 525-547, December.
    4. Lee, Tae-Hwy & Ullah, Aman & Wang, He, 2018. "The second-order bias of quantile estimators," Economics Letters, Elsevier, vol. 173(C), pages 143-147.
    5. Aretz, Kevin & Bartram, Söhnke M. & Pope, Peter F., 2011. "Asymmetric loss functions and the rationality of expected stock returns," International Journal of Forecasting, Elsevier, vol. 27(2), pages 413-437.
    6. Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2015. "Central banks’ inflation forecasts under asymmetric loss: Evidence from four Latin-American countries," Economics Letters, Elsevier, vol. 129(C), pages 66-70.
    7. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    8. Pierdzioch, Christian & Rülke, Jan-Christoph, 2013. "Do inflation targets anchor inflation expectations?," Economic Modelling, Elsevier, vol. 35(C), pages 214-223.
    9. Matei Demetrescu & Mu-Chun Wang, 2014. "Incorporating Asymmetric Preferences into Fan Charts and Path Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 287-297, April.
    10. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Christian Pierdzioch, 2021. "El Niño, La Niña, and the Forecastability of the Realized Variance of Heating Oil Price Movements," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    11. Christian Pierdzioch & Jan-Christoph Rülke & Georg Stadtmann, 2013. "Oil price forecasting under asymmetric loss," Applied Economics, Taylor & Francis Journals, vol. 45(17), pages 2371-2379, June.
    12. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    13. Charles F. Manski, 2018. "Survey Measurement of Probabilistic Macroeconomic Expectations: Progress and Promise," NBER Macroeconomics Annual, University of Chicago Press, vol. 32(1), pages 411-471.
    14. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and state-level stock market realized volatility," Journal of Financial Markets, Elsevier, vol. 66(C).
    15. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
    16. Jens J. Krüger, 2014. "A multivariate evaluation of German output growth and inflation forecasts," Economics Bulletin, AccessEcon, vol. 34(3), pages 1410-1418.
    17. Rangan Gupta & Yuvana Jaichand & Christian Pierdzioch & Reneé van Eyden, 2023. "Realized Stock-Market Volatility of the United States and the Presidential Approval Rating," Mathematics, MDPI, vol. 11(13), pages 1-27, July.
    18. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    19. Robert Krol, 2014. "Forecast Bias of Government Agencies," Cato Journal, Cato Journal, Cato Institute, vol. 34(1), pages 99-112, Winter.
    20. Christodoulakis, George & Mamatzakis, Emmanuel, 2013. "Behavioural asymmetries in the G7 foreign exchange market," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 261-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea17:258235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.