IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v32y2016i1p23-33.html
   My bibliography  Save this article

Herding behavior of business cycle forecasters

Author

Listed:
  • Rülke, Jan-Christoph
  • Silgoner, Maria
  • Wörz, Julia

Abstract

Using a large international data set, we analyze whether business cycle forecasters herd or anti-herd. In general, we find evidence for anti-herding, i.e. forecasters appear to scatter their forecasts deliberately away from the forecasts of others. Anti-herding tends to be more prevalent for the longer (next year) horizon. There is some evidence for a reduced level of anti-herding at times of increased forecast uncertainty and when the forecasts are being revised more substantially.

Suggested Citation

  • Rülke, Jan-Christoph & Silgoner, Maria & Wörz, Julia, 2016. "Herding behavior of business cycle forecasters," International Journal of Forecasting, Elsevier, vol. 32(1), pages 23-33.
  • Handle: RePEc:eee:intfor:v:32:y:2016:i:1:p:23-33
    DOI: 10.1016/j.ijforecast.2015.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016920701500059X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ottaviani, Marco & Sorensen, Peter Norman, 2006. "The strategy of professional forecasting," Journal of Financial Economics, Elsevier, vol. 81(2), pages 441-466, August.
    2. Giampiero M. Gallo & Clive W.J. Granger & Yongil Jeon, 2002. "Copycats and Common Swings: The Impact of the Use of Forecasts in Information Sets," IMF Staff Papers, Palgrave Macmillan, vol. 49(1), pages 1-2.
    3. Prati, Alessandro & Sbracia, Massimo, 2010. "Uncertainty and currency crises: Evidence from survey data," Journal of Monetary Economics, Elsevier, vol. 57(6), pages 668-681, September.
    4. Carlos Capistrán & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    5. Roy Batchelor, 2001. "How useful are the forecasts of intergovernmental agencies? The IMF and OECD versus the consensus," Applied Economics, Taylor & Francis Journals, vol. 33(2), pages 225-235.
    6. Bernhardt, Dan & Campello, Murillo & Kutsoati, Edward, 2006. "Who herds?," Journal of Financial Economics, Elsevier, vol. 80(3), pages 657-675, June.
    7. Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," Review of Economic Studies, Oxford University Press, vol. 72(4), pages 1107-1125.
    8. Ronald Bewley & Denzil G. Fiebig, 2002. "On the herding instinct of interest rate forecasters," Empirical Economics, Springer, vol. 27(3), pages 403-425.
    9. Dovern, Jonas & Fritsche, Ulrich & Loungani, Prakash & Tamirisa, Natalia, 2015. "Information rigidities: Comparing average and individual forecasts for a large international panel," International Journal of Forecasting, Elsevier, vol. 31(1), pages 144-154.
    10. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    11. Jordi Pons-Novell, 2003. "Strategic bias, herding behaviour and economic forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 67-77.
    12. Lamont, Owen A., 2002. "Macroeconomic forecasts and microeconomic forecasters," Journal of Economic Behavior & Organization, Elsevier, vol. 48(3), pages 265-280, July.
    13. Carmen M. Reinhart & Kenneth S. Rogoff, 2011. "From Financial Crash to Debt Crisis," American Economic Review, American Economic Association, vol. 101(5), pages 1676-1706, August.
    14. Scharfstein, David S & Stein, Jeremy C, 1990. "Herd Behavior and Investment," American Economic Review, American Economic Association, vol. 80(3), pages 465-479, June.
    15. David Laster & Paul Bennett & In Sun Geoum, 1999. "Rational Bias in Macroeconomic Forecasts," The Quarterly Journal of Economics, Oxford University Press, vol. 114(1), pages 293-318.
    16. Dovern, Jonas, 2013. "When are GDP forecasts updated? Evidence from a large international panel," Economics Letters, Elsevier, vol. 120(3), pages 521-524.
    17. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
    18. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    19. Pierdzioch, Christian & Rülke, Jan Christoph & Stadtmann, Georg, 2010. "New evidence of anti-herding of oil-price forecasters," Energy Economics, Elsevier, vol. 32(6), pages 1456-1459, November.
    20. Christian Pierdzioch & Jan-Christoph Rülke, 2013. "A note on the anti-herding instinct of interest rate forecasters," Empirical Economics, Springer, vol. 45(2), pages 665-673, October.
    21. Zarnowitz, Victor & Lambros, Louis A, 1987. "Consensus and Uncertainty in Economic Prediction," Journal of Political Economy, University of Chicago Press, vol. 95(3), pages 591-621, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charemza, Wojciech & Ladley, Daniel, 2016. "Central banks’ forecasts and their bias: Evidence, effects and explanation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 804-817.
    2. Rui Menezes & Sonia Bentes, 2016. "Hysteresis and Duration Dependence of Financial Crises in the US: Evidence from 1871-2016," Papers 1610.00259, arXiv.org.
    3. Fomin, M., 2016. "Business cycles and acquisition policy: Analysis of M&A deals of metallurgical companies," Working Papers 6441, Graduate School of Management, St. Petersburg State University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:32:y:2016:i:1:p:23-33. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.