IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Stochastic volatility with leverage: Fast and efficient likelihood inference"

by Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as in new window

  1. Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-953, CIRJE, Faculty of Economics, University of Tokyo.
  2. Tsunehiro Ishihara & Yasuhiro Omori & Manabu Asai, 2013. "Matrix Exponential Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-904, CIRJE, Faculty of Economics, University of Tokyo.
  3. Ikram Jebabli & Mohamed Arouri & Frédéric Teulon, 2014. "On the effects of world stock market and oil price shocks on food prices: An empirical investigation based on TVPVAR models with stochastic volatility," Working Papers 2014-209, Department of Research, Ipag Business School.
  4. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
  5. Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2015. "Macroeconomic Factors Strike Back: A Bayesian Change-Point Model of Time-Varying Risk Exposures and Premia in the U.S. Cross-Section," Working Papers 550, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  6. Koop, Gary & Korobilis, Dimitris, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," MPRA Paper 20125, University Library of Munich, Germany.
  7. Delatola, E.-I. & Griffin, J.E., 2013. "A Bayesian semiparametric model for volatility with a leverage effect," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 97-110.
  8. Nakajima, Jouchi & Omori, Yasuhiro, 2012. "Stochastic volatility model with leverage and asymmetrically heavy-tailed error using GH skew Student’s t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3690-3704.
  9. Khorunzhina, Natalia & Richard, Jean-Francois, 2016. "Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels," MPRA Paper 72326, University Library of Munich, Germany.
  10. Makoto Takahashi & Toshiaki Watanabe & Yasuhiro Omori, 2014. "Volatility and Quantile Forecasts by Realized Stochastic Volatility Models with Generalized Hyperbolic Distribution," CIRJE F-Series CIRJE-F-921, CIRJE, Faculty of Economics, University of Tokyo.
  11. Veiga, Helena & Ruiz, Esther & Mao, Xiuping, 2013. "One for all : nesting asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS ws131110, Universidad Carlos III de Madrid. Departamento de Estadística.
  12. Tsunehiro Ishihara & Yasuhiro Omori, 2009. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," CARF F-Series CARF-F-198, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  13. Umberto Triacca & Fulvia Focker, 2014. "Estimating overnight volatility of asset returns by using the generalized dynamic factor model approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 235-254, October.
  14. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
  15. Shinichiro Shirota & Takayuki Hizu & Yasuhiro Omori, 2012. "Realized stochastic volatility with leverage and long memory," CIRJE F-Series CIRJE-F-869, CIRJE, Faculty of Economics, University of Tokyo.
  16. Mark J Jensen & John M Maheu, 2012. "Estimating a Semiparametric Asymmetric Stochastic Volatility Model with a Dirichlet Process Mixture," Working Papers tecipa-453, University of Toronto, Department of Economics.
  17. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
  18. James H. Stock & Mark W. Watson, 2015. "Core Inflation and Trend Inflation," NBER Working Papers 21282, National Bureau of Economic Research, Inc.
  19. Malik, Sheheryar & Pitt, Michael K., 2011. "Particle filters for continuous likelihood evaluation and maximisation," Journal of Econometrics, Elsevier, vol. 165(2), pages 190-209.
  20. Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
  21. Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
  22. Cabral, Celso Rômulo Barbosa & da-Silva, Cibele Queiroz & Migon, Helio S., 2014. "A dynamic linear model with extended skew-normal for the initial distribution of the state parameter," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 64-80.
  23. Creal, Drew D. & Tsay, Ruey S., 2015. "High dimensional dynamic stochastic copula models," Journal of Econometrics, Elsevier, vol. 189(2), pages 335-345.
  24. Aknouche, Abdelhakim, 2013. "Periodic autoregressive stochastic volatility," MPRA Paper 69571, University Library of Munich, Germany, revised 2015.
  25. Patricia Lengua & Cristian Bayes & Gabriel Rodríguez, 2015. " A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
  26. Manabu Asai & Michael McAleer, 2010. "Alternative Asymmetric Stochastic Volatility Models," Working Papers in Economics 10/70, University of Canterbury, Department of Economics and Finance.
  27. Makoto Takahashi & Yasuhiro Omori & Toshiaki Watanabe, 2012. "News Impact Curve for Stochastic Volatility Models," Global COE Hi-Stat Discussion Paper Series gd12-242, Institute of Economic Research, Hitotsubashi University.
  28. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
  29. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," CIRJE F-Series CIRJE-F-514, CIRJE, Faculty of Economics, University of Tokyo.
  30. Krueger, Fabian & Clark, Todd E. & Ravazzolo, Francesco, 2015. "Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts," Working Paper 1439, Federal Reserve Bank of Cleveland.
  31. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
  32. István Barra & Lennart Hoogerheide & Siem Jan Koopman & André Lucas, 2014. "Joint Bayesian Analysis of Parameters and States in Nonlinear, Non-Gaussian State Space Models," Tinbergen Institute Discussion Papers 14-118/III, Tinbergen Institute, revised 31 Mar 2016.
  33. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
  34. Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2011. "Efficient estimation and particle filter for max-stable processes," CIRJE F-Series CIRJE-F-791, CIRJE, Faculty of Economics, University of Tokyo.
  35. Francesco Ravazzolo, 2015. "Oil-Price Density Forecasts of U.S. GDP," Working Papers 0038, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  36. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-1019, CIRJE, Faculty of Economics, University of Tokyo.
  37. Dinghai Xu, 2009. "The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey," Working Papers 0904, University of Waterloo, Department of Economics, revised Sep 2009.
  38. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
  39. Skaug, Hans J. & Yu, Jun, 2014. "A flexible and automated likelihood based framework for inference in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 642-654.
  40. Aastveit, Knut Are & Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2016. "Have Standard VARs Remained Stable Since the Crisis?," CEPR Discussion Papers 11558, C.E.P.R. Discussion Papers.
  41. Daniele Bianchi & Massimo Guidolin & Francesco Ravazzolo, 2013. "Dissecting the 2007-2009 real estate market bust: systematic pricing correction or just a housing fad?," Working Paper 2013/22, Norges Bank.
  42. Cem Çakmakli, 2012. "Bayesian Semiparametric Dynamic Nelson-Siegel Model," Working Paper Series 59_12, The Rimini Centre for Economic Analysis, revised Sep 2012.
  43. Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014. "Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
  44. Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
  45. Trojan, Sebastian, 2014. "Multivariate Stochastic Volatility with Dynamic Cross Leverage," Economics Working Paper Series 1424, University of St. Gallen, School of Economics and Political Science.
  46. David Neto & Sylvain Sardy & Paul Tseng, 2009. "l1-Penalized Likelihood Smoothing of Volatility Processes allowing for Abrupt Changes," Research Papers by the Institute of Economics and Econometrics, Geneva School of Economics and Management, University of Geneva 2009.05, Institut d'Economie et Econométrie, Université de Genève.
  47. Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
  48. Ralf Sabiwalsky, 2012. "Does Basel II Pillar 3 Risk Exposure Data help to Identify Risky Banks?," SFB 649 Discussion Papers SFB649DP2012-008, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  49. Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.
  50. Pym Manopimoke & Vorada Limjaroenrat, 2016. "Trend Inflation Estimates for Thailand from Disaggregated Data," PIER Discussion Papers 51, Puey Ungphakorn Institute for Economic Research, revised Dec 2016.
  51. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," CORE Discussion Papers 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  52. Jean-Francois Richard, 2016. "Finite Gaussian Mixture Approximations to Analytically Intractable Density Kerkels," Working Paper 5980, Department of Economics, University of Pittsburgh.
  53. McCausland, William J., 2012. "The HESSIAN method: Highly efficient simulation smoothing, in a nutshell," Journal of Econometrics, Elsevier, vol. 168(2), pages 189-206.
  54. Maciej Kostrzewski, 2016. "Bayesian SVLEDEJ Model for Detecting Jumps in Logarithmic Growth Rates of One Month Forward Gas Contract Prices," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 8(3), pages 161-179, September.
  55. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2008. "Marginal likelihoods for non-Gaussian models using auxiliary mixture sampling," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4608-4624, June.
  56. Tino Berger & Gerdie Everaert & Hauke Vierke, 2015. "Testing for time variation in an unobserved components model for the U.S. economy," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 15/903, Ghent University, Faculty of Economics and Business Administration.
  57. Jouchi Nakajima & Munehisa Kasuya & Toshiaki Watanabe, 2009. "Bayesian Analysis of Time-Varying Parameter Vector Autoregressive Model for the Japanese Economy and Monetary Policy," Global COE Hi-Stat Discussion Paper Series gd09-072, Institute of Economic Research, Hitotsubashi University.
  58. Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
  59. Nalan Basturk & Cem Cakmakli & Pinar Ceyhan & Herman K. van Dijk, 2013. "Posterior-Predictive Evidence on US Inflation using Extended New Keynesian Phillips Curve Models with Non-filtered Data," Tinbergen Institute Discussion Papers 13-090/III, Tinbergen Institute.
  60. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
  61. Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
  62. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
  63. Genya Kobayashi, 2016. "Skew exponential power stochastic volatility model for analysis of skewness, non-normal tails, quantiles and expectiles," Computational Statistics, Springer, vol. 31(1), pages 49-88, March.
  64. Malik, Sheheryar & Pitt, Michael K, 2009. "Modelling Stochastic Volatility with Leverage and Jumps : A Simulated Maximum Likelihood Approach via Particle Filtering," The Warwick Economics Research Paper Series (TWERPS) 897, University of Warwick, Department of Economics.
  65. Sergey Egiev, 2016. "On Persistence of Uncertainty Shocks," HSE Working papers WP BRP 144/EC/2016, National Research University Higher School of Economics.
  66. repec:tky:fseres:2014cf952 is not listed on IDEAS
  67. Dinghai Xu & John Knight, 2013. "Stochastic volatility model under a discrete mixture-of-normal specification," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 37(2), pages 216-239, April.
  68. António Alberto Santos, 2015. "The evolution of the Volatility in Financial Returns: Realized Volatility vs Stochastic Volatility Measures," GEMF Working Papers 2015-10, GEMF, Faculty of Economics, University of Coimbra.
  69. Kitsul, Yuriy & Wright, Jonathan H., 2013. "The economics of options-implied inflation probability density functions," Journal of Financial Economics, Elsevier, vol. 110(3), pages 696-711.
  70. Jouchi Nakajima, 2011. "Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications," IMES Discussion Paper Series 11-E-09, Institute for Monetary and Economic Studies, Bank of Japan.
  71. Shinichiro Shirota & Yasuhiro Omori & Hedibert. F. Lopes & Haixiang Piao, 2015. "Cholesky Realized Stochastic Volatility Model," CIRJE F-Series CIRJE-F-979, CIRJE, Faculty of Economics, University of Tokyo.
  72. Istvan Barra & Siem Jan Koopman, 2016. "Bayesian Dynamic Modeling of High-Frequency Integer Price Changes," Tinbergen Institute Discussion Papers 16-028/III, Tinbergen Institute.
  73. Yasuhiro Omori & Toshiaki Watanabe, 2007. "Block Sampler and Posterior Mode Estimation for Asymmetric Stochastic Volatility Models," CIRJE F-Series CIRJE-F-507, CIRJE, Faculty of Economics, University of Tokyo.
  74. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
  75. Gabriel Rodriguez & Willy Alanya, 2016. " Asimetrías en volatilidad: Un estudio empírico para los mercados bursátil y cambiario del Perú," Documentos de Trabajo / Working Papers 2016-413, Departamento de Economía - Pontificia Universidad Católica del Perú.
  76. Ruiz, Esther & Veiga, Helena & Mao, Xiuping, 2014. "Score driven asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS ws142618, Universidad Carlos III de Madrid. Departamento de Estadística.
  77. Deschamps, Philippe J., 2011. "Bayesian estimation of an extended local scale stochastic volatility model," Journal of Econometrics, Elsevier, vol. 162(2), pages 369-382, June.
  78. Nalan Basturk & Cem Cakmakli & Pinar Ceyhan & Herman K. van Dijk, 2013. "Posterior-Predictive Evidence on US Inflation using Phillips Curve Models with Non-Filtered Time Series," Tinbergen Institute Discussion Papers 13-011/III, Tinbergen Institute.
  79. Djennad, Abdelmajid & Rigby, Robert & Stasinopoulos, Dimitrios & Voudouris, Vlasios & Eilers, Paul, 2015. "Beyond location and dispersion models: The Generalized Structural Time Series Model with Applications," MPRA Paper 62807, University Library of Munich, Germany.
  80. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
  81. Charles S. Bos, 2011. "Relating Stochastic Volatility Estimation Methods," Tinbergen Institute Discussion Papers 11-049/4, Tinbergen Institute.
  82. Kleppe, Tore Selland & Skaug, Hans J., 2008. "Simulated maximum likelihood for general stochastic volatility models: a change of variable approach," MPRA Paper 12022, University Library of Munich, Germany.
  83. António A. F. Santos, 2015. "On the Forecasting of Financial Volatility Using Ultra-High Frequency Data," GEMF Working Papers 2015-17, GEMF, Faculty of Economics, University of Coimbra.
  84. Deschamps, P., 2015. "Alternative Formulation of the Leverage Effect in a Stochastic Volatility Model with Asymmetric Heavy-Tailed Errors," CORE Discussion Papers 2015020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.