IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Simulated maximum likelihood for general stochastic volatility models: a change of variable approach

  • Kleppe, Tore Selland
  • Skaug, Hans J.

Maximum likelihood has proved to be a valuable tool for fitting the log-normal stochastic volatility model to financial returns time series. Using a sequential change of variable framework, we are able to cast more general stochastic volatility models into a form appropriate for importance samplers based on the Laplace approximation. We apply the methodology to two example models, showing that efficient importance samplers can be constructed even for highly non-Gaussian latent processes such as square-root diffusions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/12022/1/MPRA_paper_12022.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 12022.

as
in new window

Length:
Date of creation: 10 Jul 2008
Date of revision:
Handle: RePEc:pra:mprapa:12022
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, March.
  2. Liesenfeld, Roman & Richard, Jean-Fran├žois, 2004. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Economics Working Papers 2004,12, Christian-Albrechts-University of Kiel, Department of Economics.
  3. Skaug, Hans J. & Fournier, David A., 2006. "Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 699-709, November.
  4. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
  5. Harvey, Andrew & Ruiz, Esther & Shephard, Neil, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Wiley Blackwell, vol. 61(2), pages 247-64, April.
  6. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
  7. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
  8. Jean-Francois Richard, 2007. "Efficient High-Dimensional Importance Sampling," Working Papers 321, University of Pittsburgh, Department of Economics, revised Jan 2007.
  9. Durham, Garland B., 2006. "Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor stochastic volatility models," Journal of Econometrics, Elsevier, vol. 133(1), pages 273-305, July.
  10. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
  11. Danielsson, J & Richard, J-F, 1993. "Accelerated Gaussian Importance Sampler with Application to Dynamic Latent Variable Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S153-73, Suppl. De.
  12. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
  13. Bent Nielsen & Neil Shephard, 1999. "Likelihood Anlaysis of a First Order Autoregressive Model with Exponential Innovations," Economics Series Working Papers 1999-W08, University of Oxford, Department of Economics.
  14. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
  15. Durham, Garland B., 2007. "SV mixture models with application to S&P 500 index returns," Journal of Financial Economics, Elsevier, vol. 85(3), pages 822-856, September.
  16. G Sandmann & Siem Jan Koopman, 1996. "Maximum Likelihood Estimation of Stochastic Volatility Models," FMG Discussion Papers dp248, Financial Markets Group.
  17. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:12022. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.