Some searches may not work properly. We apologize for the inconvenience.
My bibliography Save this paperTail Forecasting with Multivariate Bayesian Additive Regression Trees
Author
Abstract
Suggested Citation
DOI: 10.26509/frbc-wp-202108r
Download full text from publisher
Other versions of this item:
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
- Marcellino, Massimiliano & Clark, Todd & Huber, Florian & Koop, Gary & Pfarrhofer, Michael, 2022. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," CEPR Discussion Papers 17461, C.E.P.R. Discussion Papers.
References listed on IDEAS
- Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
- Thomas R. Cook & Taeyoung Doh, 2019. "Assessing Macroeconomic Tail Risks in a Data-Rich Environment," Research Working Paper RWP 19-12, Federal Reserve Bank of Kansas City.
- Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
- Lucrezia Reichlin & Giovanni Ricco & Thomas Hasenzagl, 2020.
"Financial Variables as Predictors of Real Growth Vulnerability,"
Documents de Travail de l'OFCE
2020-06, Observatoire Francais des Conjonctures Economiques (OFCE).
- Lucrezia Reichlin & Giovanni Ricco & Thomas Hasenzagl, 2020. "Financial Variables as Predictors of Real Growth Vulnerability," Sciences Po publications 06/2020, Sciences Po.
- Lucrezia Reichlin & Giovanni Ricco & Thomas Hasenzagl, 2020. "Financial Variables as Predictors of Real Growth Vulnerability," SciencePo Working papers Main hal-03403077, HAL.
- Reichlin, Lucrezia & Ricco, Giovanni & Hasenzagl, Thomas, 2020. "Financial Variables as Predictors of Real Growth Vulnerability," CEPR Discussion Papers 14322, C.E.P.R. Discussion Papers.
- Lucrezia Reichlin & Giovanni Ricco & Thomas Hasenzagl, 2020. "Financial Variables as Predictors of Real Growth Vulnerability," Working Papers hal-03403077, HAL.
- Reichlin, Lucrezia & Ricco, Giovanni & Hasenzagl, Thomas, 2020. "Financial variables as predictors of real growth vulnerability," Discussion Papers 05/2020, Deutsche Bundesbank.
- Sebastiano Manzan, 2015. "Forecasting the Distribution of Economic Variables in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 144-164, January.
- West, Kenneth D, 1996.
"Asymptotic Inference about Predictive Ability,"
Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
- West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
- Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, University Library of Munich, Germany.
- Eric Ghysels & Leonardo Iania & Jonas Striaukas, 2018. "Quantile-based Inflation Risk Models," Working Paper Research 349, National Bank of Belgium.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Real-time nowcasting with a Bayesian mixed frequency model with stochastic volatility," Working Papers (Old Series) 1227, Federal Reserve Bank of Cleveland.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2013. "Real-Time Nowcasting with a Bayesian Mixed Frequency Model with Stochastic Volatility," CEPR Discussion Papers 9312, C.E.P.R. Discussion Papers.
- Galbraith, John W. & van Norden, Simon, 2019. "Asymmetry in unemployment rate forecast errors," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1613-1626.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
- Huber, Florian & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2023.
"Nowcasting in a pandemic using non-parametric mixed frequency VARs,"
Journal of Econometrics, Elsevier, vol. 232(1), pages 52-69.
- Florian Huber & Gary Koop & Luca Onorante & Michael Pfarrhofer & Josef Schreiner, 2020. "Nowcasting in a Pandemic using Non-Parametric Mixed Frequency VARs," Papers 2008.12706, arXiv.org, revised Dec 2020.
- Florian, Huber & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2021. "Nowcasting in a Pandemic using Non-Parametric Mixed Frequency VARs," Working Papers 2021-01, Joint Research Centre, European Commission.
- Huber, Florian & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2021. "Nowcasting in a pandemic using non-parametric mixed frequency VARs," Working Paper Series 2510, European Central Bank.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2021.
"Addressing COVID-19 Outliers in BVARs with Stochastic Volatility,"
Working Papers
21-02R, Federal Reserve Bank of Cleveland, revised 09 Aug 2021.
- Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano & Mertens, Elmar, 2022. "Addressing COVID-19 outliers in BVARs with stochastic volatility," Discussion Papers 13/2022, Deutsche Bundesbank.
- Marcellino, Massimiliano & Clark, Todd & Carriero, Andrea & Mertens, Elmar, 2021. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," CEPR Discussion Papers 15964, C.E.P.R. Discussion Papers.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Bayesian VARs: Specification Choices and Forecast Accuracy,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2011. "Bayesian VARs: Specification Choices and Forecast Accuracy," CEPR Discussion Papers 8273, C.E.P.R. Discussion Papers.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2011. "Bayesian VARs: specification choices and forecast accuracy," Working Papers (Old Series) 1112, Federal Reserve Bank of Cleveland.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Gary M. Koop, 2013.
"Forecasting with Medium and Large Bayesian VARS,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
- Gary Koop, 2010. "Forecasting with Medium and Large Bayesian VARs," Working Paper series 43_10, Rimini Centre for Economic Analysis.
- Gary Koop, 2011. "Forecasting with Medium and Large Bayesian VARs," Working Papers 1117, University of Strathclyde Business School, Department of Economics.
- Koop, Gary, 2011. "Forecasting with Medium and Large Bayesian VARs," SIRE Discussion Papers 2011-38, Scottish Institute for Research in Economics (SIRE).
- Davide Delle Monache & Andrea De Polis & Ivan Petrella, 2024.
"Modeling and Forecasting Macroeconomic Downside Risk,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1010-1025, July.
- Delle-Monache, Davide & De-Polis, Andrea & Petrella, Ivan, 2020. "Modelling and Forecasting Macroeconomic Downside Risk," EMF Research Papers 34, Economic Modelling and Forecasting Group.
- Delle Monache, Davide & De Polis, Andrea & Petrella, Ivan, 2021. "Modeling and forecasting macroeconomic downside risk," Temi di discussione (Economic working papers) 1324, Bank of Italy, Economic Research and International Relations Area.
- Petrella, Ivan & Delle Monache, Davide & De Polis, Andrea, 2022. "Modeling and Forecasting Macroeconomic Downside Risk," CEPR Discussion Papers 15109, C.E.P.R. Discussion Papers.
- Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2023. "Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage," International Journal of Forecasting, Elsevier, vol. 39(1), pages 346-363.
- Chan, Joshua C.C., 2021.
"Minnesota-type adaptive hierarchical priors for large Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
- Joshua C. C. Chan, 2019. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," CAMA Working Papers 2019-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
- Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
- Domenico Giannone & Martha Banbura & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," ULB Institutional Repository 2013/13388, ULB -- Universite Libre de Bruxelles.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
- James H. Stock & Mark W. Watson, 2012. "Generalized Shrinkage Methods for Forecasting Using Many Predictors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 481-493, June.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015.
"Prior Selection for Vector Autoregressions,"
The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2012. "Prior selection for vector autoregressions," Working Paper Series 1494, European Central Bank.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2012. "Prior Selection for Vector Autoregressions," CEPR Discussion Papers 8755, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michèle Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," Working Papers ECARES ECARES 2012-002, ULB -- Universite Libre de Bruxelles.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," NBER Working Papers 18467, National Bureau of Economic Research, Inc.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018.
"Combined Density Nowcasting in an Uncertain Economic Environment,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an uncertain economic environment," Working Paper 2014/17, Norges Bank.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an Uncertain Economic Environment," Tinbergen Institute Discussion Papers 14-152/III, Tinbergen Institute.
- Goulet Coulombe, Philippe & Marcellino, Massimiliano & Stevanović, Dalibor, 2021.
"Can Machine Learning Catch The Covid-19 Recession?,"
National Institute Economic Review, National Institute of Economic and Social Research, vol. 256, pages 71-109, April.
- Marcellino, Massimiliano & Stevanovic, Dalibor & Goulet Coulombe, Philippe, 2021. "Can Machine Learning Catch the COVID-19 Recession?," CEPR Discussion Papers 15867, C.E.P.R. Discussion Papers.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2021. "Can Machine Learning Catch the COVID-19 Recession?," CIRANO Working Papers 2021s-09, CIRANO.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2021. "Can Machine Learning Catch the COVID-19 Recession?," Working Papers 21-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2021. "Can Machine Learning Catch the COVID-19 Recession?," Papers 2103.01201, arXiv.org.
- Giacomini, Raffaella & Komunjer, Ivana, 2005.
"Evaluation and Combination of Conditional Quantile Forecasts,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
- Giacomini, Raffaella & Komunjer, Ivana, 2002. "Evaluation and Combination of Conditional Quantile Forecasts," University of California at San Diego, Economics Working Paper Series qt4n99t4wz, Department of Economics, UC San Diego.
- Raffaella Giacomini & Ivana Komunjer, 2003. "Evaluation and Combination of Conditional Quantile Forecasts," Boston College Working Papers in Economics 571, Boston College Department of Economics.
- Todd E. Clark, 2011.
"Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
- Clark, Todd E., 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 327-341.
- Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
- Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2019.
"Vulnerable Growth,"
American Economic Review, American Economic Association, vol. 109(4), pages 1263-1289, April.
- Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2016. "Vulnerable growth," Staff Reports 794, Federal Reserve Bank of New York.
- Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2018. "Vulnerable Growth," Liberty Street Economics 20180409, Federal Reserve Bank of New York.
- Nina Boyarchenko & Domenico Giannone & Tobias Adrian, 2017. "Vulnerable Growth," 2017 Meeting Papers 1317, Society for Economic Dynamics.
- Adrian, Tobias & Boyarchenko, Nina & Giannone, Domenico, 2016. "Vulnerable Growth," CEPR Discussion Papers 11583, C.E.P.R. Discussion Papers.
- Todd E. Clark & Francesco Ravazzolo, 2015. "Macroeconomic Forecasting Performance under Alternative Specifications of Time‐Varying Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 551-575, June.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016.
"Common Drifting Volatility in Large Bayesian VARs,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2012. "Common Drifting Volatility in Large Bayesian VARs," CEPR Discussion Papers 8894, C.E.P.R. Discussion Papers.
- Andrea CARRIERO & Todd E. CLARK & Massimiliano MARCELLINO, 2012. "Common Drifting Volatility in Large Bayesian VARs," Economics Working Papers ECO2012/08, European University Institute.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Common drifting volatility in large Bayesian VARs," Working Papers (Old Series) 1206, Federal Reserve Bank of Cleveland.
- Florian Huber & Martin Feldkircher, 2019.
"Adaptive Shrinkage in Bayesian Vector Autoregressive Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 27-39, January.
- Feldkircher, Martin & Huber, Florian, 2016. "Adaptive Shrinkage in Bayesian Vector Autoregressive Models," Department of Economics Working Paper Series 221, WU Vienna University of Economics and Business.
- Florian Huber & Martin Feldkircher, 2016. "Adaptive shrinkage in Bayesian vector autoregressive models," Department of Economics Working Papers wuwp221, Vienna University of Economics and Business, Department of Economics.
- Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022.
"High-frequency monitoring of growth at risk,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
- Laurent Ferrara & Matteo Mogliani & Jean-Guillaume Sahuc, 2020. "High-frequency monitoring of growth-at-risk," CAMA Working Papers 2020-97, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Jean-Guillaume Sahuc & Matteo Mogliani & Laurent Ferrara, 2022. "High-frequency monitoring of growth at risk," Post-Print hal-03361425, HAL.
- Michael T. Kiley, 2022.
"Unemployment Risk,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(5), pages 1407-1424, August.
- Michael T. Kiley, 2018. "Unemployment Risk," Finance and Economics Discussion Series 2018-067, Board of Governors of the Federal Reserve System (U.S.).
- Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
- Florian Huber & Luca Rossini, 2020. "Inference in Bayesian Additive Vector Autoregressive Tree Models," Papers 2006.16333, arXiv.org, revised Mar 2021.
- Korobilis, Dimitris, 2017. "Quantile regression forecasts of inflation under model uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 11-20.
- Gianni De Nicolò & Marcella Lucchetta, 2017.
"Forecasting Tail Risks,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 159-170, January.
- Gianni De Nicolò & Marcella Lucchetta, 2015. "Forecasting Tail Risks," CESifo Working Paper Series 5286, CESifo.
- Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014.
"Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
- Gregor Kastner & Sylvia Fruhwirth-Schnatter, 2017. "Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Estimation of Stochastic Volatility Models," Papers 1706.05280, arXiv.org.
- Sebastiano Manzan & Dawit Zerom, 2015. "Asymmetric Quantile Persistence and Predictability: the Case of US Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(2), pages 297-318, April.
- Minsuk Shin & Anirban Bhattacharya & Valen E. Johnson, 2020. "Functional Horseshoe Priors for Subspace Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1784-1797, December.
- Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Tobias Adrian & Federico Grinberg & Nellie Liang & Sheheryar Malik & Jie Yu, 2022.
"The Term Structure of Growth-at-Risk,"
American Economic Journal: Macroeconomics, American Economic Association, vol. 14(3), pages 283-323, July.
- Adrian, Tobias & Liang, Nellie & Grinberg, Federico & Malik, Sheherya, 2018. "The Term Structure of Growth-at-Risk," CEPR Discussion Papers 13349, C.E.P.R. Discussion Papers.
- Mr. Tobias Adrian & Federico Grinberg & Nellie Liang & Sheheryar Malik, 2018. "The Term Structure of Growth-at-Risk," IMF Working Papers 2018/180, International Monetary Fund.
- repec:hal:spmain:info:hdl:2441/4nn4ojjkth8qe9ci5b0hpu7ala is not listed on IDEAS
- Gregor Kastner & Florian Huber, 2020.
"Sparse Bayesian vector autoregressions in huge dimensions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
- Gregor Kastner & Florian Huber, 2017. "Sparse Bayesian vector autoregressions in huge dimensions," Papers 1704.03239, arXiv.org, revised Dec 2019.
- Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
- Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016.
"Systemic risk and the macroeconomy: An empirical evaluation,"
Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
- Stefano Giglio & Bryan T. Kelly & Seth Pruitt, 2015. "Systemic Risk and the Macroeconomy: An Empirical Evaluation," NBER Working Papers 20963, National Bureau of Economic Research, Inc.
- Enrique Sentana, 1995.
"Quadratic ARCH Models,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(4), pages 639-661.
- Sentana,E., 1995. "Quadratic Arch Models," Papers 9517, Centro de Estudios Monetarios Y Financieros-.
- Enrique Sentana, 1995. "Quadratic ARCH Models," Working Papers wp1995_9517, CEMFI.
- Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
- Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
- Manzan, Sebastiano & Zerom, Dawit, 2013. "Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?," International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
- Wagner Piazza Gaglianone & Luiz Renato Lima, 2012.
"Constructing Density Forecasts from Quantile Regressions,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
- Wagner Piazza Gaglianone & Luiz Renato Lima, 2012. "Constructing Density Forecasts from Quantile Regressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
- Raffaella Giacomini & Barbara Rossi, 2010.
"Forecast comparisons in unstable environments,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
- Giacomini, Raffaella & Rossi, Barbara, 2008. "Forecast Comparisons in Unstable Environments," Working Papers 08-04, Duke University, Department of Economics.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021.
"Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
- Marcelo Madeiros & Gabriel Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2019. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Working Papers Central Bank of Chile 834, Central Bank of Chile.
- Kalli, Maria & Griffin, Jim E., 2018. "Bayesian nonparametric vector autoregressive models," Journal of Econometrics, Elsevier, vol. 203(2), pages 267-282.
- Dario Caldara & Chiara Scotti & Molin Zhong, 2021. "Macroeconomic and Financial Risks: A Tale of Mean and Volatility," International Finance Discussion Papers 1326, Board of Governors of the Federal Reserve System (U.S.).
- Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
- Lorin Crawford & Kris C. Wood & Xiang Zhou & Sayan Mukherjee, 2018. "Bayesian Approximate Kernel Regression With Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1710-1721, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Florian Huber & Josef Schreiner, 2023. "Are Phillips curves in CESEE still alive and well behaved?," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q3/23, pages 7-27.
- Tony Chernis & Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2023.
"Predictive Density Combination Using a Tree-Based Synthesis Function,"
Staff Working Papers
23-61, Bank of Canada.
- Tony Chernis & Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2023. "Predictive Density Combination Using a Tree-Based Synthesis Function," Working Papers 23-30, Federal Reserve Bank of Cleveland.
- Tony Chernis & Niko Hauzenberger & Florian Huber & Gary Koop & James Mitchell, 2023. "Predictive Density Combination Using a Tree-Based Synthesis Function," Papers 2311.12671, arXiv.org.
- Michael Pfarrhofer, 2024.
"Forecasts with Bayesian vector autoregressions under real time conditions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
- Michael Pfarrhofer, 2020. "Forecasts with Bayesian vector autoregressions under real time conditions," Papers 2004.04984, arXiv.org.
- Oyebayo Ridwan Olaniran & Ali Rashash R. Alzahrani, 2023. "On the Oracle Properties of Bayesian Random Forest for Sparse High-Dimensional Gaussian Regression," Mathematics, MDPI, vol. 11(24), pages 1-29, December.
- Jan Prüser & Florian Huber, 2024.
"Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
- Jan Pruser & Florian Huber, 2023. "Nonlinearities in Macroeconomic Tail Risk through the Lens of Big Data Quantile Regressions," Papers 2301.13604, arXiv.org, revised Sep 2023.
- Massimiliano MARCELLINO & Michael PFARRHOFER, 2024. "Bayesian nonparametric methods for macroeconomic forecasting," BAFFI CAREFIN Working Papers 24224, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
- Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Papers 2311.16333, arXiv.org, revised Apr 2024.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Michael Zhemkov, 2021.
"Nowcasting Russian GDP using forecast combination approach,"
International Economics, CEPII research center, issue 168, pages 10-24.
- Zhemkov, Michael, 2021. "Nowcasting Russian GDP using forecast combination approach," International Economics, Elsevier, vol. 168(C), pages 10-24.
- Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
- Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023. "Forecasting euro area inflation with machine-learning models," Research Bulletin, European Central Bank, vol. 112.
- Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pfarrhofer, Michael, 2022.
"Modeling tail risks of inflation using unobserved component quantile regressions,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Michael Pfarrhofer, 2021. "Modeling tail risks of inflation using unobserved component quantile regressions," Papers 2103.03632, arXiv.org, revised Oct 2021.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2020. "Nowcasting Tail Risks to Economic Activity with Many Indicators," Working Papers 20-13R2, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2024.
"Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1099-1127, August.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2020. "Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions," Working Papers 20-02R, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2022. "Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions," CEPR Discussion Papers 17512, C.E.P.R. Discussion Papers.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021.
"Investigating Growth at Risk Using a Multi-country Non-parametric Quantile Factor Model,"
Papers
2110.03411, arXiv.org.
- Todd Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Investigating Growth at Risk Using a Multi-country Non-parametric Quantile Factor Model," Working Papers 2307, University of Strathclyde Business School, Department of Economics.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Tamás Kiss & Stepan Mazur & Hoang Nguyen & Pär Österholm, 2023.
"Modeling the relation between the US real economy and the corporate bond‐yield spread in Bayesian VARs with non‐Gaussian innovations,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 347-368, March.
- Kiss, Tamás & Mazur, Stepan & Nguyen, Hoang & Österholm, Pär, 2021. "Modelling the Relation between the US Real Economy and the Corporate Bond-Yield Spread in Bayesian VARs with non-Gaussian Disturbances," Working Papers 2021:9, Örebro University, School of Business.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023.
"Real-time inflation forecasting using non-linear dimension reduction techniques,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
- Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
- Chan, Joshua C.C., 2023.
"Comparing stochastic volatility specifications for large Bayesian VARs,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
- Joshua C. C. Chan, 2022. "Comparing Stochastic Volatility Specifications for Large Bayesian VARs," Papers 2208.13255, arXiv.org.
- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Chan, Joshua C.C., 2021.
"Minnesota-type adaptive hierarchical priors for large Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
- Joshua C. C. Chan, 2019. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," CAMA Working Papers 2019-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Gregor Kastner & Florian Huber, 2020.
"Sparse Bayesian vector autoregressions in huge dimensions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
- Gregor Kastner & Florian Huber, 2017. "Sparse Bayesian vector autoregressions in huge dimensions," Papers 1704.03239, arXiv.org, revised Dec 2019.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022.
"Nowcasting tail risk to economic activity at a weekly frequency,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 843-866, August.
- Marcellino, Massimiliano & Clark, Todd & Carriero, Andrea, 2021. "Nowcasting Tail Risk to Economic Activity at a Weekly Frequency," CEPR Discussion Papers 16496, C.E.P.R. Discussion Papers.
- Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87, March.
- Berg, Tim O. & Henzel, Steffen R., 2015.
"Point and density forecasts for the euro area using Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
- Berg, Tim Oliver & Henzel, Steffen, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79783, Verein für Socialpolitik / German Economic Association.
- Tim Oliver Berg & Steffen Henzel, 2013. "Point and Density Forecasts for the Euro Area Using Many Predictors: Are Large BVARs Really Superior?," ifo Working Paper Series 155, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Tim Oliver Berg & Steffen Henzel, 2014. "Point and Density Forecasts for the Euro Area Using Bayesian VARs," CESifo Working Paper Series 4711, CESifo.
- Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
- Jan Prüser & Florian Huber, 2024.
"Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
- Jan Pruser & Florian Huber, 2023. "Nonlinearities in Macroeconomic Tail Risk through the Lens of Big Data Quantile Regressions," Papers 2301.13604, arXiv.org, revised Sep 2023.
- Sebastian Ankargren & Paulina Jon'eus, 2019. "Estimating Large Mixed-Frequency Bayesian VAR Models," Papers 1912.02231, arXiv.org.
More about this item
Keywords
Nonparametric VAR; regression trees; macroeconomic forecasting; scenario analysis;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2021-03-29 (Econometrics)
- NEP-ETS-2021-03-29 (Econometric Time Series)
- NEP-FOR-2021-03-29 (Forecasting)
- NEP-ORE-2021-03-29 (Operations Research)
- NEP-RMG-2021-03-29 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedcwq:90366. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: 4D Library (email available below). General contact details of provider: https://edirc.repec.org/data/frbclus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.