IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i7p1162-d1625305.html
   My bibliography  Save this article

Adaptive Bayesian Nonparametric Regression via Stationary Smoothness Priors

Author

Listed:
  • Justin L. Tobias

    (Economics Department, Purdue University, West Lafayette, IN 47907, USA)

Abstract

A procedure for Bayesian nonparametric regression is described that automatically adjusts the degree of smoothing as the curvature of the underlying function changes. Relative to previous work adopting a similar approach that either employs a single global smoothing parameter or assumes that the smoothing process follows a random walk, the model considered here permits adaptive smoothing and imposes stationarity in the autoregressive smoothing process. An efficient Markov Chain Monte Carlo (MCMC) scheme for model estimation is fully described for this stationary case, and the performance of the method is illustrated in several generated data experiments. An application is also provided, analyzing the relationship between behavioral problems in students and academic achievement. Point estimates from the nonparametric methods suggest (a) expected achievement declines monotonically with a behavioral problems index (BPI) score and (b) the rate of decline is relatively flat at the left tail of the BPI distribution and then becomes sharply more negative.

Suggested Citation

  • Justin L. Tobias, 2025. "Adaptive Bayesian Nonparametric Regression via Stationary Smoothness Priors," Mathematics, MDPI, vol. 13(7), pages 1-19, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1162-:d:1625305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/7/1162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/7/1162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan, Joshua C.C., 2023. "Comparing stochastic volatility specifications for large Bayesian VARs," Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
    2. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    3. Koop, Gary & Tobias, Justin L., 2006. "Semiparametric Bayesian inference in smooth coefficient models," Journal of Econometrics, Elsevier, vol. 134(1), pages 283-315, September.
    4. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    5. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    6. Brendan Kline & Justin L. Tobias, 2008. "The wages of BMI: Bayesian analysis of a skewed treatment-response model with nonparametric endogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(6), pages 767-793.
    7. Chib, Siddhartha & Greenberg, Edward & Simoni, Anna, 2023. "Nonparametric Bayes Analysis Of The Sharp And Fuzzy Regression Discontinuity Designs," Econometric Theory, Cambridge University Press, vol. 39(3), pages 481-533, June.
    8. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    9. Chib, Siddhartha & Jeliazkov, Ivan, 2006. "Inference in Semiparametric Dynamic Models for Binary Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 685-700, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bacolod, Marigee P. & Tobias, Justin L., 2006. "Schools, school quality and achievement growth: Evidence from the Philippines," Economics of Education Review, Elsevier, vol. 25(6), pages 619-632, December.
    2. Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models," Journal of Econometrics, Elsevier, vol. 143(2), pages 291-316, April.
    3. Todd E. Clark & Gergely Ganics & Elmar Mertens, 2022. "Constructing Fan Charts from the Ragged Edge of SPF Forecasts," Working Papers 22-36, Federal Reserve Bank of Cleveland.
    4. Joshua C.C. Chan & Rodney W. Strachan, 2023. "Bayesian State Space Models In Macroeconometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
    5. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    6. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    7. Hernández, Juan R., 2025. "Covered interest parity: A forecasting approach to estimate the neutral band," Economic Modelling, Elsevier, vol. 148(C).
    8. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    9. Gregor Kastner & Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2016. "Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models," Papers 1602.08154, arXiv.org, revised Jul 2017.
    10. Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.
    11. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    12. Jouchi Nakajima & Yasuhiro Omori, 2007. "Leverage, Heavy-Tails and Correlated Jumps in Stochastic Volatility Models (Revised in January 2008; Published in "Computational Statistics and Data Analysis", 53-6, 2335-2353. April 2009. )," CARF F-Series CARF-F-107, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    13. Tsionas, Mike G. & Philippas, Dionisis & Philippas, Nikolaos, 2022. "Multivariate stochastic volatility for herding detection: Evidence from the energy sector," Energy Economics, Elsevier, vol. 109(C).
    14. Theodore Panagiotidis & Georgios Papapanagiotou, 2024. "A note on the determinants of NFTs returns," Working Paper series 24-07, Rimini Centre for Economic Analysis.
    15. Kenichiro McAlinn & Asahi Ushio & Teruo Nakatsuma, 2016. "Volatility Forecasts Using Nonlinear Leverage Effects," Papers 1605.06482, arXiv.org, revised Dec 2017.
    16. Maria Kalli & Jim Griffin, 2015. "Flexible Modeling of Dependence in Volatility Processes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 102-113, January.
    17. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    18. Ulm, M. & Hambuckers, J., 2022. "Do interest rate differentials drive the volatility of exchange rates? Evidence from an extended stochastic volatility model," Journal of Empirical Finance, Elsevier, vol. 65(C), pages 125-148.
    19. Jensen, Mark J. & Maheu, John M., 2014. "Estimating a semiparametric asymmetric stochastic volatility model with a Dirichlet process mixture," Journal of Econometrics, Elsevier, vol. 178(P3), pages 523-538.
    20. Watanabe, Toshiaki & Nakajima, Jouchi, 2024. "High-frequency realized stochastic volatility model," Journal of Empirical Finance, Elsevier, vol. 79(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1162-:d:1625305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.