IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Semiparametric Bayesian Inference in Smooth Coefficient Models

  • Koop, Gary M
  • Tobias, Justin

We describe procedures for Bayesian estimation and testing in cross sectional, panel data and nonlinear smooth coefficient models. The smooth coefficient model is a generalization of the partially linear or additive model wherein coefficients on linear explanatory variables are treated as unknown functions of an observable covariate. In the approach we describe, points on the regression lines are regarded as unknown parameters and priors are placed on differences between adjacent points to introduce the potential for smoothing the curves. The algorithms we describe are quite simple to implement - for example, estimation, testing and smoothing parameter selection can be carried out analytically in the cross-sectional smooth coefficient model. We apply our methods using data from the National Longitudinal Survey of Youth (NLSY). Using the NLSY data we first explore the relationship between ability and log wages and flexibly model how returns to schooling vary with measured cognitive ability. We also examine model of female labor supply and use this example to illustrate how the described techniques can been applied in nonlinear settings.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Iowa State University, Department of Economics in its series Staff General Research Papers with number 12202.

in new window

Date of creation: 01 Jan 2006
Date of revision:
Publication status: Published in Journal of Econometrics 2006,
Handle: RePEc:isu:genres:12202
Contact details of provider: Postal: Iowa State University, Dept. of Economics, 260 Heady Hall, Ames, IA 50011-1070
Phone: +1 515.294.6741
Fax: +1 515.294.0221
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. John DiNardo & Justin L. Tobias, 2001. "Nonparametric Density and Regression Estimation," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 11-28, Fall.
  2. Chou, Y. J. & Staiger, Douglas, 2001. "Health insurance and female labor supply in Taiwan," Journal of Health Economics, Elsevier, vol. 20(2), pages 187-211, March.
  3. Harvey, A.C. & Koopman, S.J.M., 1999. "Signal Extraction and the Formulation of Unobserved Components Models," Discussion Paper 1999-44, Tilburg University, Center for Economic Research.
  4. Chib, Siddhartha & Greenberg, Edward, 1995. "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models," Journal of Econometrics, Elsevier, vol. 68(2), pages 339-360, August.
  5. John F. Geweke & Michael P. Keane & David E. Runkle, 1994. "Statistical inference in the multinomial multiperiod probit model," Staff Report 177, Federal Reserve Bank of Minneapolis.
  6. Tobias, Justin, 2001. "Are Returns to Schooling Concentrated Among the Most Able? A Semiparametric Analysis of the Ability-Earnings Relationships," Staff General Research Papers 12016, Iowa State University, Department of Economics.
  7. Koop, G. & van Dijk, H.K., 1999. "Testing for integration using evolving trend and seasonal models: A Bayesian approach," Econometric Institute Research Papers EI 9934/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  8. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, June.
  9. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
  10. Adonis Yatchew, 1998. "Nonparametric Regression Techniques in Economics," Journal of Economic Literature, American Economic Association, vol. 36(2), pages 669-721, June.
  11. Koop, G. & Poirier, D., 2000. "Bayesian Variants of Some Classical Semiparametric Regression Techniques," Papers 00-01-22, California Irvine - School of Social Sciences.
  12. James Heckman & Edward Vytlacil, 2000. "Identifying the Role of Cognitive Ability in Explaining the Level of and Change in the Return to Schooling," NBER Working Papers 7820, National Bureau of Economic Research, Inc.
  13. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
  14. Li, Qi, et al, 2002. "Semiparametric Smooth Coefficient Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 412-22, July.
  15. Thomas C. Buchmueller & Robert G. Valletta, 1996. "The effect of health insurance on married female labor supply," Working Papers in Applied Economic Theory 96-09, Federal Reserve Bank of San Francisco.
  16. Taber, Christopher R, 2001. "The Rising College Premium in the Eighties: Return to College or Return to Unobserved Ability?," Review of Economic Studies, Wiley Blackwell, vol. 68(3), pages 665-91, July.
  17. Koop, Gary M & Tobias, Justin, 2004. "Learning About Heterogeneity in Returns to Schooling," Staff General Research Papers 12008, Iowa State University, Department of Economics.
  18. John Cawley & Karen Conneely & James Heckman & Edward Vytlacil, 1996. "Cognitive Ability, Wages, and Meritocracy," NBER Working Papers 5645, National Bureau of Economic Research, Inc.
  19. Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian efficiency analysis through individual effects: Hospital cost frontiers," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 77-105.
  20. McKinley L. Blackburn & David Neumark, 1991. "Omitted-Ability Bias and the Increase in the Return to Schooling," NBER Working Papers 3693, National Bureau of Economic Research, Inc.
  21. Robinson, P M, 1988. "Semiparametric Econometrics: A Survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(1), pages 35-51, January.
  22. John Cawley & James Heckman & Edward Vytlacil, 1999. "On Policies To Reward The Value Added By Educators," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 720-727, November.
  23. Shively, Thomas S. & Kohn, Robert, 1997. "A Bayesian approach to model selection in stochastic coefficient regression models and structural time series models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 39-52.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:isu:genres:12202. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Curtis Balmer)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.