IDEAS home Printed from https://ideas.repec.org/p/lec/leecon/04-18.html

Semiparametric Bayesian inference in smooth coefficient models

Author

Listed:
  • Gary Koop

  • Justin Tobias

Abstract

We describe procedures for Bayesian estimation and testing in both cross sectional and longitudinal data smooth coefficient models (with and without endogeneity problems). The smooth coefficient model is a generalization of the partially linear or additive model wherein coefficients on linear explanatory variables are treated as unknown functions of an observable covariate. In the approach we describe, points on the regression lines are regarded as unknown parameters and priors are placed on differences between adjacent points to introduce the potential for smoothing the curves. The algorithms we describe are quite simple to implement - estimation, testing and smoothing parameter selection can be carried out analytically in the cross-sectional smooth coefficient model, and estimation in the hierarchical models only involves simulation from standard distributions. We apply our methods by fitting several hierarchical models using data from the National Longitudinal Survey of Youth (NLSY). We explore the relationship between ability and log wages and flexibly model how returns to schooling vary with measured cognitive ability. In a generalization of this model, we also permit endogeneity of schooling and describe simulation-based methods for inference in the presence of the endogeneity problem. We find returns to schooling are approximately constant throughout the ability support and that simpler (and often used) parametric specifications provide an adequate description of these relationships.

Suggested Citation

  • Gary Koop & Justin Tobias, 2003. "Semiparametric Bayesian inference in smooth coefficient models," Discussion Papers in Economics 04/18, Division of Economics, School of Business, University of Leicester.
  • Handle: RePEc:lec:leecon:04/18
    as

    Download full text from publisher

    File URL: https://www.le.ac.uk/economics/research/RePEc/lec/leecon/dp04-18.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Dorfman, Jeffrey H. & Karali, Berna, 2010. "Do Farmers Hedge Optimally or by Habit? A Bayesian Partial-Adjustment Model of Farmer Hedging," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 42(4), pages 791-803, November.
    3. Justin L. Tobias, 2025. "Adaptive Bayesian Nonparametric Regression via Stationary Smoothness Priors," Mathematics, MDPI, vol. 13(7), pages 1-19, March.
    4. Berna Karali & Jeffrey H. Dorfman & Walter N. Thurman, 2010. "Do volatility determinants vary across futures contracts? Insights from a smoothed Bayesian estimator," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(3), pages 257-277, March.
    5. Dorfman, Jeffrey H. & Patridge, Mark D. & Galloway, Hamilton, 2008. "Are High-Tech Employment and Natural Amenities Linked?: Answers from a Smoothed Bayesian Spatial Model," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6459, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Suzanna-Maria Paleologou, 2016. "The long-run tendency of government expenditure: a semi-parametric modelling approach," Empirical Economics, Springer, vol. 50(3), pages 753-776, May.
    7. Agee, Mark D. & Atkinson, Scott E. & Crocker, Thomas D. & Williams, Jonathan W., 2014. "Non-separable pollution control: Implications for a CO2 emissions cap and trade system," Resource and Energy Economics, Elsevier, vol. 36(1), pages 64-82.
    8. William H. Greene & David A. Hensher, 2008. "Modeling Ordered Choices: A Primer and Recent Developments," Working Papers 08-26, New York University, Leonard N. Stern School of Business, Department of Economics.
    9. Scott E. Atkinson & Jeffrey H. Dorfman, 2009. "Feasible estimation of firm-specific allocative inefficiency through Bayesian numerical methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 675-697.
    10. Huang, Ho-Chuan (River) & Lin, Shu-Chin, 2008. "Smooth-time-varying Okun's coefficients," Economic Modelling, Elsevier, vol. 25(2), pages 363-375, March.
    11. Murat K. Munkin, 2022. "Count Roy model with finite mixtures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1160-1181, September.
    12. Myeong Jun Kim & Stanley I. M. Ko & Sung Y. Park, 2021. "On time and frequency-varying Okun’s coefficient: a new approach based on ensemble empirical mode decomposition," Empirical Economics, Springer, vol. 61(3), pages 1151-1188, September.
    13. Luca Brugnolini & Giuseppe Ragusa, 2022. "Euro Area Deflationary Pressure Index," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 883-900, October.
    14. Bacolod, Marigee P. & Tobias, Justin L., 2006. "Schools, school quality and achievement growth: Evidence from the Philippines," Economics of Education Review, Elsevier, vol. 25(6), pages 619-632, December.
    15. Amin Mugera & Michael Langemeier & Allen Featherstone, 2012. "Labor productivity convergence in the Kansas farm sector: a three-stage procedure using data envelopment analysis and semiparametric regression analysis," Journal of Productivity Analysis, Springer, vol. 38(1), pages 63-79, August.
    16. Zheng, Xiaoyong, 2008. "Semiparametric Bayesian estimation of mixed count regression models," Economics Letters, Elsevier, vol. 100(3), pages 435-438, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lec:leecon:04/18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Abbie Sleath (email available below). General contact details of provider: https://edirc.repec.org/data/deleiuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.