IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/69571.html
   My bibliography  Save this paper

Periodic autoregressive stochastic volatility

Author

Listed:
  • Aknouche, Abdelhakim

Abstract

This paper proposes a stochastic volatility model (PAR-SV) in which the log-volatility follows a first-order periodic autoregression. This model aims at representing time series with volatility displaying a stochastic periodic dynamic structure, and may then be seen as an alternative to the familiar periodic GARCH process. The probabilistic structure of the proposed PAR-SV model such as periodic stationarity and autocovariance structure are first studied. Then, parameter estimation is examined through the quasi-maximum likelihood (QML) method where the likelihood is evaluated using the prediction error decomposition approach and Kalman filtering. In addition, a Bayesian MCMC method is also considered, where the posteriors are given from conjugate priors using the Gibbs sampler in which the augmented volatilities are sampled from the Griddy Gibbs technique in a single-move way. As a-by-product, period selection for the PAR-SV is carried out using the (conditional) Deviance Information Criterion (DIC). A simulation study is undertaken to assess the performances of the QML and Bayesian Griddy Gibbs estimates. Applications of Bayesian PAR-SV modeling to daily, quarterly and monthly S&P 500 returns are considered.

Suggested Citation

  • Aknouche, Abdelhakim, 2013. "Periodic autoregressive stochastic volatility," MPRA Paper 69571, University Library of Munich, Germany, revised 2015.
  • Handle: RePEc:pra:mprapa:69571
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/69571/9/MPRA_paper_69571.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/83083/1/MPRA_paper_83083.pdf
    File Function: revised version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Carvalho, Carlos M. & Lopes, Hedibert F., 2007. "Simulation-based sequential analysis of Markov switching stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4526-4542, May.
    2. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    3. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    4. Nakajima, Jouchi & Omori, Yasuhiro, 2009. "Leverage, heavy-tails and correlated jumps in stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2335-2353, April.
    5. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    6. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    7. repec:dau:papers:123456789/2603 is not listed on IDEAS
    8. Denise R. Osborn & Christos S. Savva & Len Gill, 2008. "Periodic Dynamic Conditional Correlations between Stock Markets in Europe and the US," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(3), pages 307-325, Summer.
    9. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
    10. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882, Enero.
    11. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    12. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    13. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    14. Ilias Tsiakas, 2006. "Periodic Stochastic Volatility and Fat Tails," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 90-135.
    15. Regnard, Nazim & Zakoïan, Jean-Michel, 2011. "A conditionally heteroskedastic model with time-varying coefficients for daily gas spot prices," Energy Economics, Elsevier, vol. 33(6), pages 1240-1251.
    16. Ruiz, Esther, 1994. "Quasi-maximum likelihood estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 63(1), pages 289-306, July.
    17. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    18. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    19. repec:bla:restud:v:65:y:1998:i:3:p:361-93 is not listed on IDEAS
    20. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    21. Abdelhakim Aknouche & Abdelouahab Bibi, 2009. "Quasi‐maximum likelihood estimation of periodic GARCH and periodic ARMA‐GARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 19-46, January.
    22. Sigauke, C. & Chikobvu, D., 2011. "Prediction of daily peak electricity demand in South Africa using volatility forecasting models," Energy Economics, Elsevier, vol. 33(5), pages 882-888, September.
    23. Berg, Andreas & Meyer, Renate & Yu, Jun, 2004. "Deviance Information Criterion for Comparing Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 107-120, January.
    24. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    25. So, Mike K P & Lam, K & Li, W K, 1998. "A Stochastic Volatility Model with Markov Switching," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 244-253, April.
    26. Taylor, James W., 2006. "Density forecasting for the efficient balancing of the generation and consumption of electricity," International Journal of Forecasting, Elsevier, vol. 22(4), pages 707-724.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Periodic stochastic volatility; periodic autoregression; QML via prediction error decomposition and Kalman filtering; Bayesian Griddy Gibbs sampler; single-move approach; DIC.;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:69571. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.