Density forecasting for the efficient balancing of the generation and consumption of electricity
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bollerslev, Tim & Ghysels, Eric, 1996.
"Periodic Autoregressive Conditional Heteroscedasticity,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
- Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Universite de Montreal, Departement de sciences economiques.
- Osborn, Denise R, et al, 1988. "Seasonality and the Order of Integration for Consumption," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 50(4), pages 361-377, November.
- Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002.
"A state space framework for automatic forecasting using exponential smoothing methods,"
International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
- Hyndman, R.J. & Koehler, A.B. & Snyder, R.D. & Grose, S., 2000. "A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods," Monash Econometrics and Business Statistics Working Papers 9/00, Monash University, Department of Econometrics and Business Statistics.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
- Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
- Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
- Franses, Philip Hans & Paap, Richard, 2004. "Periodic Time Series Models," OUP Catalogue, Oxford University Press, number 9780199242030.
- Ghysels,Eric & Osborn,Denise R., 2001.
"The Econometric Analysis of Seasonal Time Series,"
Cambridge Books,
Cambridge University Press, number 9780521565882, September.
- Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521562607, January.
- Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Martin Martens & Yuan‐Chen Chang & Stephen J. Taylor, 2002. "A Comparison of Seasonal Adjustment Methods When Forecasting Intraday Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 25(2), pages 283-299, June.
- Hans Franses, Philip & Romijn, Gerbert, 1993. "Periodic integration in quarterly UK macroeconomic variables," International Journal of Forecasting, Elsevier, vol. 9(4), pages 467-476, December.
- Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
- Darbellay, Georges A. & Slama, Marek, 2000. "Forecasting the short-term demand for electricity: Do neural networks stand a better chance?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 71-83.
- J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
- Philip Hans Franses & Richard Paap, 2000. "Modelling day-of-the-week seasonality in the S&P 500 index," Applied Financial Economics, Taylor & Francis Journals, vol. 10(5), pages 483-488.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Aknouche, Abdelhakim & Guerbyenne, Hafida, 2009. "Periodic stationarity of random coefficient periodic autoregressions," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 990-996, April.
- Hajar Nasrazadani & Maria Pilar Mu oz Gracia, 2017. "Comparing Iranian and Spanish Electricity Markets with Nonlinear Time Series," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 262-286.
- Sinan Deng & John Inekwe & Vladimir Smirnov & Andrew Wait & Chao Wang, 2023. "Machine Learning and Deep Learning Forecasts of Electricity Imbalance Prices," Working Papers 2023-03, University of Sydney, School of Economics.
- Abdelhakim Aknouche & Eid Al-Eid, 2012. "Asymptotic inference of unstable periodic ARCH processes," Statistical Inference for Stochastic Processes, Springer, vol. 15(1), pages 61-79, April.
- Abdelhakim Aknouche, 2017. "Periodic autoregressive stochastic volatility," Statistical Inference for Stochastic Processes, Springer, vol. 20(2), pages 139-177, July.
- Abdelhakim Aknouche & Abdelouahab Bibi, 2009. "Quasi‐maximum likelihood estimation of periodic GARCH and periodic ARMA‐GARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 19-46, January.
- Caiado, Jorge, 2007. "Forecasting water consumption in Spain using univariate time series models," MPRA Paper 6610, University Library of Munich, Germany.
- repec:qut:auncer:wp103 is not listed on IDEAS
- Aknouche, Abdelhakim, 2013. "Periodic autoregressive stochastic volatility," MPRA Paper 69571, University Library of Munich, Germany, revised 2015.
- Francisco Martínez-Álvarez & Alicia Troncoso & Gualberto Asencio-Cortés & José C. Riquelme, 2015. "A Survey on Data Mining Techniques Applied to Electricity-Related Time Series Forecasting," Energies, MDPI, vol. 8(11), pages 1-32, November.
- Aknouche, Abdelhakim & Al-Eid, Eid & Demouche, Nacer, 2016. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," MPRA Paper 75770, University Library of Munich, Germany, revised 19 Dec 2016.
- Sigauke, C. & Chikobvu, D., 2011. "Prediction of daily peak electricity demand in South Africa using volatility forecasting models," Energy Economics, Elsevier, vol. 33(5), pages 882-888, September.
- Aknouche, Abdelhakim & Guerbyenne, Hafida, 2009. "On some probabilistic properties of double periodic AR models," Statistics & Probability Letters, Elsevier, vol. 79(3), pages 407-413, February.
- George P. Papaioannou & Christos Dikaiakos & Anargyros Dramountanis & Panagiotis G. Papaioannou, 2016. "Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoot," Energies, MDPI, vol. 9(8), pages 1-40, August.
- Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
- Abdelhakim Aknouche & Eid Al-Eid & Nacer Demouche, 2018. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 485-511, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
- Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0601, December.
- Chu, Carlin C.F. & Lam, K.P., 2011. "Modeling intraday volatility: A new consideration," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(3), pages 388-418, July.
- Aknouche, Abdelhakim & Al-Eid, Eid & Demouche, Nacer, 2016. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," MPRA Paper 75770, University Library of Munich, Germany, revised 19 Dec 2016.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Ergün, A. Tolga & Jun, Jongbyung, 2010. "Time-varying higher-order conditional moments and forecasting intraday VaR and Expected Shortfall," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 264-272, August.
- Abdelhakim Aknouche & Eid Al-Eid & Nacer Demouche, 2018. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 485-511, October.
- Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
- Christian Bontemps & Nour Meddahi, 2012.
"Testing distributional assumptions: A GMM aproach,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 978-1012, September.
- N. Meddahi & C. Bontemps, 2004. "Testing Distributional Assumptions: A GMM Approach," Econometric Society 2004 North American Winter Meetings 487, Econometric Society.
- Christian Bontemps & Nour Meddahi, 2012. "Testing distributional assumptions: A GMM aproach," Post-Print hal-02875123, HAL.
- Bontemps, Christian & Meddahi, Nour, 2007. "Testing Distributional Assumptions: A GMM Approach," IDEI Working Papers 486, Institut d'Économie Industrielle (IDEI), Toulouse.
- Bontemps, Christian & Meddahi, Nour, 2005.
"Testing normality: a GMM approach,"
Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
- Christian Bontemps & Nour Meddahi, 2002. "Testing Normality: A GMM Approach," CIRANO Working Papers 2002s-63, CIRANO.
- Christian Bontemps & Nour Meddahi, 2005. "Testing normality: a GMM approach," Post-Print hal-02875105, HAL.
- BONTEMPS, Christian & MEDDAHI, Nour, 2002. "Testing Normality : A GMM Approach," Cahiers de recherche 2002-14, Universite de Montreal, Departement de sciences economiques.
- Christian BONTEMPS & Nour MEDDAHI, 2002. "Testing Normality : A Gmm Approach," Cahiers de recherche 14-2002, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Karmakar, Madhusudan & Paul, Samit, 2016. "Intraday risk management in International stock markets: A conditional EVT approach," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 34-55.
- Raunig, Burkhard, 2006. "The longer-horizon predictability of German stock market volatility," International Journal of Forecasting, Elsevier, vol. 22(2), pages 363-372.
- Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014.
"Time Series Models for Business and Economic Forecasting,"
Cambridge Books,
Cambridge University Press, number 9780521520911, January.
- Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521817707, January.
- John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, April.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654, September.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, January.
- Samit Paul & Madhusudan Karmakar, 2017. "Relative Efficiency of Component GARCH-EVT Approach in Managing Intraday Market Risk," Multinational Finance Journal, Multinational Finance Journal, vol. 21(4), pages 247-283, December.
- Jang Hyung Cho & Robert T. Daigler, 2012. "An unbiased autoregressive conditional intraday seasonal variance filtering process," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 231-247, October.
- Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005.
"Volatility Forecasting,"
PIER Working Paper Archive
05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," NBER Working Papers 11188, National Bureau of Economic Research, Inc.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:22:y:2006:i:4:p:707-724. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.