IDEAS home Printed from
   My bibliography  Save this article

An unbiased autoregressive conditional intraday seasonal variance filtering process


  • Jang Hyung Cho
  • Robert T. Daigler


We develop a new autoregressive conditional seasonal variance (ARCSV) process that captures both the changes in and the persistency of the intraday seasonal (U-shape) pattern of volatility. Unlike other procedures for seasonality, this approach allows for the intraday volatility pattern to change over time, resulting in an increase in the filtering performance over the extant deterministic filtering models. We quantify the gains in the filtering performance by comparing our model with the flexible Fourier form (FFF) model of Andersen and Bollerslev [ J. Empir. Finance , 1997a, 4 , 115--158]. Moreover, the ARCSV model does not create any statistical distortion in the filtered series, as occurs with other de-seasoning processes. We prove that the ARCSV model satisfies the spectral criteria required to be judged as a good filtering process. Monte Carlo simulation results show that the performance of the ARCSV model is superior to the FFF model. In particular, the seasonal adjustment performance of the ARCSV model is robust under the condition that the innovation of the underlying seasonal variance process is large and the daily non-seasonal variance process is misspecified.

Suggested Citation

  • Jang Hyung Cho & Robert T. Daigler, 2012. "An unbiased autoregressive conditional intraday seasonal variance filtering process," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 231-247, October.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:2:p:231-247
    DOI: 10.1080/14697688.2010.531281

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:2:p:231-247. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.