IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v289y2001i3p543-556.html
   My bibliography  Save this article

Differentiating intraday seasonalities through wavelet multi-scaling

Author

Listed:
  • Gençay, Ramazan
  • Selçuk, Faruk
  • Whitcher, Brandon

Abstract

It is well documented that strong intraday seasonalities may induce distortions in the estimation of volatility models. These seasonalities are also the dominant source for the underlying misspecifications of the various volatility models. Therefore, an obvious route is to filter out the underlying intraday seasonalities from the data. In this paper, we propose a simple method for intraday seasonality extraction that is free of model selection parameters which may affect other intraday seasonality filtering methods. Our methodology is based on a wavelet multi-scaling approach which decomposes the data into its low- and high-frequency components through the application of a non-decimated discrete wavelet transform. It is simple to calculate, does not depend on a particular model selection criterion or model-specific parameter choices. The proposed filtering method is translation invariant, has the ability to decompose an arbitrary length series without boundary adjustments, is associated with a zero-phase filter and is circular. Being circular helps to preserve the entire sample unlike other two-sided filters where data loss occurs from the beginning and the end of the studied sample.

Suggested Citation

  • Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon, 2001. "Differentiating intraday seasonalities through wavelet multi-scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 543-556.
  • Handle: RePEc:eee:phsmap:v:289:y:2001:i:3:p:543-556 DOI: 10.1016/S0378-4371(00)00463-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437100004635
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andersen, Torben G & Bollerslev, Tim, 1997. " Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    2. Muller, Ulrich A. & Dacorogna, Michel M. & Olsen, Richard B. & Pictet, Olivier V. & Schwarz, Matthias & Morgenegg, Claude, 1990. "Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis," Journal of Banking & Finance, Elsevier, vol. 14(6), pages 1189-1208, December.
    3. Adlai Fisher & Laurent Calvet & Benoit Mandelbrot, 1997. "Multifractality of Deutschemark/US Dollar Exchange Rates," Cowles Foundation Discussion Papers 1166, Cowles Foundation for Research in Economics, Yale University.
    4. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:289:y:2001:i:3:p:543-556. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.