IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Bayesian Semiparametric Dynamic Nelson-Siegel Model

  • Cem Çakmakli

    ()

    (Department of Quantitative Economics, University of Amsterdam, The Netherlands)

This paper proposes the Bayesian semiparametric dynamic Nelson-Siegel model, where the density of the yield curve factors and thereby the density of the yields are estimated along with other model parameters. This is accomplished by modeling the error distributions of the factors according to a Dirichlet process mixture. An efficient and computationally tractable algorithm is implemented to obtain Bayesian inference. The semiparametric structure of the factors enables us to capture various forms of non-normalities including fat tails, skewness and nonlinear dependence between factors using a unified approach. The potential of the proposed framework is examined using US bond yields data. The results show that the model can identify two different periods with distinct characteristics. While the relatively stable years of late 1980s and 1990s comprise the first period, the second period captures the years of severe recessions including the recessions of 1970s and 1980s and the recent recession of 2007-9 together with highly volatile periods of Federal Reserve’s monetary policy experiments in the first half of 1980s. Interestingly, results point out a nonlinear dependence structure between the factors contrasting existing evidence.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.rcfea.org/RePEc/pdf/wp59_12.pdf
Download Restriction: no

Paper provided by The Rimini Centre for Economic Analysis in its series Working Paper Series with number 59_12.

as
in new window

Length:
Date of creation: Aug 2012
Date of revision: Sep 2012
Handle: RePEc:rim:rimwps:59_12
Contact details of provider: Postal: Via Patara, 3, 47921 Rimini (RN)
Phone: +390541434142
Fax: +39054155431
Web page: http://www.rcfea.org
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jim E. Griffin & Mark F.J. Steel, 2002. "Semiparametric Bayesian Inference for Stochastic Frontier Models," Econometrics 0209001, EconWPA, revised 18 Sep 2002.
  2. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
  3. Hautsch, Nikolaus & Yang, Fuyu, 2012. "Bayesian inference in a Stochastic Volatility Nelson–Siegel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3774-3792.
  4. Jens H. E. Christensen & Jose A. Lopez & Glenn D. Rudebusch, 2009. "Inflation expectations and risk premiums in an arbitrage-free model of nominal and real bond yields," Proceedings, Federal Reserve Bank of San Francisco, issue Jan.
  5. Conley, Timothy G. & Hansen, Christian B. & McCulloch, Robert E. & Rossi, Peter E., 2008. "A semi-parametric Bayesian approach to the instrumental variable problem," Journal of Econometrics, Elsevier, vol. 144(1), pages 276-305, May.
  6. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
  7. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
  8. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
  9. Bianchi, Francesco & Mumtaz, Haroon & Surico, Paolo, 2009. "Dynamics of the term structure of UK interest rates," Bank of England working papers 363, Bank of England.
  10. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  11. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
  12. Christensen, Jens H.E. & Diebold, Francis X. & Rudebusch, Glenn D., 2011. "The affine arbitrage-free class of Nelson-Siegel term structure models," Journal of Econometrics, Elsevier, vol. 164(1), pages 4-20, September.
  13. Siegel, Andrew F. & Nelson, Charles R., 1988. "Long-Term Behavior of Yield Curves," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(01), pages 105-110, March.
  14. Yu, Wei-Choun & Zivot, Eric, 2011. "Forecasting the term structures of Treasury and corporate yields using dynamic Nelson-Siegel models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 579-591, April.
  15. Mark J. Jensen & John M. Maheu, 2009. "Bayesian Semiparametric Stochastic Volatility Modeling," Working Paper Series 23_09, The Rimini Centre for Economic Analysis, revised Jan 2009.
  16. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-89, October.
  17. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
  18. Chib, Siddhartha & Hamilton, Barton H., 2002. "Semiparametric Bayes analysis of longitudinal data treatment models," Journal of Econometrics, Elsevier, vol. 110(1), pages 67-89, September.
  19. Mark J. Jensen, 2004. "Semiparametric Bayesian Inference of Long-Memory Stochastic Volatility Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 895-922, November.
  20. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
  21. Markus Junker & Alexander Szimayer & Niklas Wagner, 2004. "Nonlinear Term Structure Dependence: Copula Functions, Empirics, and Risk Implications," Econometrics 0401007, EconWPA.
  22. Keisuke Hirano, 2002. "Semiparametric Bayesian Inference in Autoregressive Panel Data Models," Econometrica, Econometric Society, vol. 70(2), pages 781-799, March.
  23. Ken Nyholm & Riccardo Rebonato, 2008. "Long-horizon yield curve projections: comparison of semi-parametric and parametric approaches," Applied Financial Economics, Taylor & Francis Journals, vol. 18(20), pages 1597-1611.
  24. Junker, Markus & Szimayer, Alex & Wagner, Niklas, 2006. "Nonlinear term structure dependence: Copula functions, empirics, and risk implications," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1171-1199, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:59_12. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.