IDEAS home Printed from https://ideas.repec.org/f/c/pli778.html
   My authors  Follow this author

Brantley Liddle

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Huntington, Hillard G. & Liddle, Brantley, 2022. "How Energy Prices Shape OECD Economic Growth: Panel Evidence from Multiple Decades," MPRA Paper 113040, University Library of Munich, Germany.

    Cited by:

    1. Zanxin Wang & Rui Wang & Yaqing Liu, 2024. "The macroeconomic effect of petroleum product price regulation in alleviating the crude oil price volatility," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-22, April.
    2. Calì, Massimiliano & Cantore, Nicola & Marin, Giovanni & Mazzanti, Massimiliano & Nicolli, Francesco & Presidente, Giorgio, 2023. "Energy prices and the economic performance of firms in emerging countries," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 357-366.

  2. Liddle, Brantley, 2015. "What Are the Carbon Emissions Elasticities for Income and Population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates," MPRA Paper 61304, University Library of Munich, Germany.

    Cited by:

    1. Muhammad Irfan & Jacob Cherian & Abdul Aziz Abdul Rahman & Akram M. Haddad & Muhammad Safdar Sial & Basit Ali & Talles Vianna Brugni, 2022. "Measuring the Impact of Air Pollutants on Ecological Footprint, Forest Area and Cropland," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 444-452.
    2. Yan Wang & Weihua Xiao & Yicheng Wang & Baodeng Hou & Heng Yang & Xuelei Zhang & Mingzhi Yang & Lishan Zhu, 2018. "Exploring City Development Modes under the Dual Control of Water Resources and Energy-Related CO 2 Emissions: The Case of Beijing, China," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    3. Arifur Rahman Atiqur Rahman & Mohd Shahidan Shaari & Faiz Masnan & Miguel Angel Esquivias, 2022. "The Impacts of Energy Use, Tourism and Foreign Workers on CO 2 Emissions in Malaysia," Sustainability, MDPI, vol. 14(4), pages 1-14, February.
    4. Andrew Mason & Ronald Lee & members of the NTA Network, 2022. "Six Ways Population Change Will Affect the Global Economy," Population and Development Review, The Population Council, Inc., vol. 48(1), pages 51-73, March.
    5. Casey, Gregory & Galor, Oded, 2017. "Is faster economic growth compatible with reductions in carbon emissions? The role of diminished population growth," MPRA Paper 76164, University Library of Munich, Germany.
    6. Kumar, Sandeep & Muhuri, Pranab K., 2019. "A novel GDP prediction technique based on transfer learning using CO2 emission dataset," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Seker, Fahri & Ertugrul, Hasan Murat & Cetin, Murat, 2015. "The impact of foreign direct investment on environmental quality: A bounds testing and causality analysis for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 347-356.
    8. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    9. Nasreen, Samia & Mbarek, Mounir Ben & Atiq-ur-Rehman, Muhammad, 2020. "Long-run causal relationship between economic growth, transport energy consumption and environmental quality in Asian countries: Evidence from heterogeneous panel methods," Energy, Elsevier, vol. 192(C).
    10. Shi, Qiaoling & Zhao, Yuhuan & Qian, Zhiling & Zheng, Lu & Wang, Song, 2022. "Global value chains participation and carbon emissions: Evidence from Belt and Road countries," Applied Energy, Elsevier, vol. 310(C).
    11. Shuai Liu & Fei Fan & Jianqing Zhang, 2019. "Are Small Cities More Environmentally Friendly? An Empirical Study from China," IJERPH, MDPI, vol. 16(5), pages 1-16, February.
    12. Hongbo Liu & Hanho Kim & Shuanglu Liang & Oh-Sang Kwon, 2018. "Export Diversification and Ecological Footprint: A Comparative Study on EKC Theory among Korea, Japan, and China," Sustainability, MDPI, vol. 10(10), pages 1-12, October.
    13. Zhou, Yang & Liu, Yansui, 2016. "Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China," Applied Energy, Elsevier, vol. 180(C), pages 800-809.
    14. Hussein Moghaddam & Robert M. Kunst, 2023. "The Role of Natural Gas in Mitigating Greenhouse Gas Emissions: The Environmental Kuznets Curve Hypothesis for Major Gas-Producing Countries," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    15. Anobua Acha Arnaud Martial & Huang Dechun & Liton Chandra Voumik & Md. Jamsedul Islam & Shapan Chandra Majumder, 2023. "Investigating the Influence of Tourism, GDP, Renewable Energy, and Electricity Consumption on Carbon Emissions in Low-Income Countries," Energies, MDPI, vol. 16(12), pages 1-21, June.
    16. Tiancai Xing & Qichuan Jiang & Xuejiao Ma, 2017. "To Facilitate or Curb? The Role of Financial Development in China’s Carbon Emissions Reduction Process: A Novel Approach," IJERPH, MDPI, vol. 14(10), pages 1-39, October.
    17. Mortaza Ojaghlou & Erginbay Ugurlu & Marta Kadłubek & Eleftherios Thalassinos, 2023. "Economic Activities and Management Issues for the Environment: An Environmental Kuznets Curve (EKC) and STIRPAT Analysis in Turkey," Resources, MDPI, vol. 12(5), pages 1-14, April.
    18. Chindo Sulaiman & A. S. Abdul-Rahim, 2018. "Population Growth and CO2 Emission in Nigeria: A Recursive ARDL Approach," SAGE Open, , vol. 8(2), pages 21582440187, April.
    19. Underwood, Anthony & Fremstad, Anders, 2018. "Does sharing backfire? A decomposition of household and urban economies in CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 404-413.
    20. Reyer Gerlagh & Veronica Lupi & Marzio Galeotti, 2023. "Fertility and climate change," Scandinavian Journal of Economics, Wiley Blackwell, vol. 125(1), pages 208-252, January.
    21. Ronald R. Kumar & Peter J. Stauvermann, 2019. "The Effects of a Revenue-Neutral Child Subsidy Tax Mechanism on Growth and GHG Emissions," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    22. Shijie Yang & Yunjia Wang & Rongqing Han & Yong Chang & Xihua Sun, 2021. "Spatial Heterogeneity of Factors Influencing CO 2 Emissions in China’s High-Energy-Intensive Industries," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    23. Xinxuan Cheng & Longfei Fan & Jiachen Wang, 2018. "Can Energy Structure Optimization, Industrial Structure Changes, Technological Improvements, and Central and Local Governance Effectively Reduce Atmospheric Pollution in the Beijing–Tianjin–Hebei Area," Sustainability, MDPI, vol. 10(3), pages 1-16, February.
    24. Brantley Liddle & George Messinis, 2018. "Revisiting carbon Kuznets curves with endogenous breaks modeling: evidence of decoupling and saturation (but few inverted-Us) for individual OECD countries," Empirical Economics, Springer, vol. 54(2), pages 783-798, March.
    25. Fatemeh Dehdar & Nuno Silva & José Alberto Fuinhas & Matheus Koengkan & Nazia Nazeer, 2022. "The Impact of Technology and Government Policies on OECD Carbon Dioxide Emissions," Energies, MDPI, vol. 15(22), pages 1-17, November.
    26. Li, Wei & Lu, Can & Ding, Yi & Zhang, Yan-Wu, 2017. "The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China," Applied Energy, Elsevier, vol. 204(C), pages 509-524.
    27. Casey, Gregory & Galor, Oded, 2016. "Population Growth and Carbon Emissions," IZA Discussion Papers 10380, Institute of Labor Economics (IZA).
    28. Fremstad, Anders & Underwood, Anthony & Zahran, Sammy, 2018. "The Environmental Impact of Sharing: Household and Urban Economies in CO2 Emissions," Ecological Economics, Elsevier, vol. 145(C), pages 137-147.
    29. Ryan Rafaty & Geoffroy Dolphin & Felix Pretis, 2020. "Carbon pricing and the elasticity of CO2 emissions," Working Papers EPRG2035, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    30. Ghoddusi, Hamed & Rodivilov, Alexander & Roy, Mandira, 2021. "Income elasticity of demand versus consumption: Implications for energy policy analysis," Energy Economics, Elsevier, vol. 95(C).
    31. Soojin Jo & Lilia Karnizova, 2021. "Energy Efficiency and Fluctuations in CO2 Emissions," Working Papers 2107E, University of Ottawa, Department of Economics.
    32. Wei Li & Guomin Li & Rongxia Zhang & Wen Sun & Wen Wu & Baihui Jin & Pengfei Cui, 2017. "Carbon Reduction Potential of Resource-Dependent Regions Based on Simulated Annealing Programming Algorithm," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    33. Liddle, Brantley & Sadorsky, Perry, 2017. "How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions?," Applied Energy, Elsevier, vol. 197(C), pages 212-221.
    34. Brantley Liddle, 2017. "Accounting for Nonlinearity, Asymmetry, Heterogeneity, and Cross-Sectional Dependence in Energy Modeling: US State-Level Panel Analysis," Economies, MDPI, vol. 5(3), pages 1-11, August.
    35. Lars Sorge & Anne Neumann, 2019. "The Impact of Population, Affluence, Technology, and Urbanization on CO2 Emissions across Income Groups," Discussion Papers of DIW Berlin 1812, DIW Berlin, German Institute for Economic Research.
    36. Ota, Toru & Kakinaka, Makoto & Kotani, Koji, 2018. "Demographic effects on residential electricity and city gas consumption in the aging society of Japan," Energy Policy, Elsevier, vol. 115(C), pages 503-513.
    37. Xiaosan, Zhang & Qingquan, Jiang & Shoukat Iqbal, Khattak & Manzoor, Ahmad & Zia Ur, Rahman, 2021. "Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China," Energy Policy, Elsevier, vol. 155(C).
    38. Thai-Ha Le, 2021. "Drivers of greenhouse gas emissions in ASEAN + 6 countries: a new look," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18096-18115, December.
    39. Hongbo Liu & Hanho Kim & Justin Choe, 2019. "Export diversification, CO2 emissions and EKC: panel data analysis of 125 countries," Asia-Pacific Journal of Regional Science, Springer, vol. 3(2), pages 361-393, June.
    40. Ramphul Ohlan, 2015. "The impact of population density, energy consumption, economic growth and trade openness on CO 2 emissions in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1409-1428, November.
    41. Gozgor, Giray & Can, Muhlis, 2016. "Does Export Product Quality Matter for CO2 Emissions? Evidence from China," MPRA Paper 71873, University Library of Munich, Germany.
    42. Olaronke T. ONANUGA, 2017. "Elasticity of CO2 emissions with Respect to Income, Population, and Energy Use: Time Series Evidence from African Countries," Economic Alternatives, University of National and World Economy, Sofia, Bulgaria, issue 4, pages 651-670, December.
    43. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    44. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Characterizing the Influences of Economic Development, Energy Consumption, Urbanization, Industrialization, and Vehicles Amount on PM 2.5 Concentrations of China," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    45. Magee, Christopher L. & Devezas, Tessaleno C., 2017. "A simple extension of dematerialization theory: Incorporation of technical progress and the rebound effect," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 196-205.
    46. Amantay Akbota & Jungho Baek, 2018. "The Environmental Consequences of Growth: Empirical Evidence from the Republic of Kazakhstan," Economies, MDPI, vol. 6(1), pages 1-11, March.
    47. Liddle, Brantley & Messinis, George, 2014. "Revisiting sulfur Kuznets curves with endogenous breaks modeling: Substantial evidence of inverted-Us/Vs for individual OECD countries," MPRA Paper 59565, University Library of Munich, Germany.
    48. Hemachandra Padhan & Santosh Kumar Sahu & Umakant Dash, 2023. "Economic globalization and environmental quality: a study of OECD economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 10123-10142, September.
    49. Paramati, Sudharshan Reddy & Mo, Di & Huang, Ruixian, 2021. "The role of financial deepening and green technology on carbon emissions: Evidence from major OECD economies," Finance Research Letters, Elsevier, vol. 41(C).
    50. Canh, Nguyen Phuc & Schinckus, Christophe & Thanh, Su Dinh & Chong, Felicia Hui Ling, 2021. "The determinants of the energy consumption: A shadow economy-based perspective," Energy, Elsevier, vol. 225(C).
    51. Betul Gokkir & J. Samuel Barkin, 2019. "Are liberal states greener? Political ideology and CO2 emissions in American states, 1980–2012," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 9(4), pages 386-396, December.
    52. Peter K. Kruse-Andersen, 2019. "Directed Technical Change, Environmental Sustainability, and Population Growth," Discussion Papers 19-12, University of Copenhagen. Department of Economics.
    53. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
    54. Ma, Xuejiao & Jiang, Ping & Jiang, Qichuan, 2020. "Research and application of association rule algorithm and an optimized grey model in carbon emissions forecasting," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    55. Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).
    56. Yu Zhang & Xi Chen & Ya Wu & Chenyang Shuai & Liyin Shen & Gui Ye, 2020. "Peaks of transportation CO2 emissions of 119 countries for sustainable development: Results from carbon Kuznets curve," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 550-571, July.
    57. Mathy Sane & Miroslav Hajek & Joseph Phiri & Jamilu Said Babangida & Chukwudi Nwaogu, 2022. "Application of Decoupling Approach to Evaluate Electricity Consumption, Agriculture, GDP, Crude Oil Production, and CO 2 Emission Nexus in Support of Economic Instrument in Nigeria," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    58. Chinazaekpere Nwani & Festus V. Bekun & Bright A. Gyamfi & Ekpeno L. Effiong & Andrew A. Alola, 2023. "Toward sustainable use of natural resources: Nexus between resource rents, affluence, energy intensity and carbon emissions in developing and transition economies," Natural Resources Forum, Blackwell Publishing, vol. 47(2), pages 155-176, May.
    59. Xu, Bin & Lin, Boqiang, 2016. "Reducing CO2 emissions in China's manufacturing industry: Evidence from nonparametric additive regression models," Energy, Elsevier, vol. 101(C), pages 161-173.
    60. Mingyuan Guo & Shaoli Chen & Yu Zhang, 2022. "Spatial Analysis on the Role of Multi-Dimensional Urbanizations in Carbon Emissions: Evidence from China," IJERPH, MDPI, vol. 19(9), pages 1-23, April.
    61. Lee, Chien-Chiang & Zhao, Ya-Nan, 2023. "Heterogeneity analysis of factors influencing CO2 emissions: The role of human capital, urbanization, and FDI," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    62. Han Han & Huimin Li & Kaize Zhang, 2019. "Spatial-Temporal Coupling Analysis of the Coordination between Urbanization and Water Ecosystem in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 16(19), pages 1-18, October.
    63. Axel Franzen & Sebastian Mader, 2016. "Predictors of national CO2 emissions: do international commitments matter?," Climatic Change, Springer, vol. 139(3), pages 491-502, December.
    64. Liddle, Brantley, 2018. "Consumption-based accounting and the trade-carbon emissions nexus," Energy Economics, Elsevier, vol. 69(C), pages 71-78.
    65. Li, Rongrong & Wang, Qiang & Li, Lejia & Hu, Sailan, 2023. "Do natural resource rent and corruption governance reshape the environmental Kuznets curve for ecological footprint? Evidence from 158 countries," Resources Policy, Elsevier, vol. 85(PB).
    66. Hasanov, Fakhri J. & Bulut, Cihan & Suleymanov, Elchin, 2016. "Do population age groups matter in the energy use of the oil-exporting countries?," Economic Modelling, Elsevier, vol. 54(C), pages 82-99.
    67. Wang, Jing & Wan, Guanghua & Wang, Chen, 2019. "Participation in GVCs and CO2 emissions," Energy Economics, Elsevier, vol. 84(C).
    68. Kuriyama, Akihisa & Abe, Naoya, 2018. "Ex-post assessment of the Kyoto Protocol – quantification of CO2 mitigation impact in both Annex B and non-Annex B countries-," Applied Energy, Elsevier, vol. 220(C), pages 286-295.
    69. Shobande, Olatunji A. & Ogbeifun, Lawrence, 2023. "Pooling cross-sectional and time series data for estimating causality between technological innovation, affluence and carbon dynamics: A comparative evidence from developed and developing countries," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    70. Yao, Yao & Ivanovski, Kris & Inekwe, John & Smyth, Russell, 2020. "Human capital and CO2 emissions in the long run," Energy Economics, Elsevier, vol. 91(C).
    71. Kopas, Jacob & York, Erin & Jin, Xiaomeng & Harish, S.P. & Kennedy, Ryan & Shen, Shiran Victoria & Urpelainen, Johannes, 2020. "Environmental Justice in India: Incidence of Air Pollution from Coal-Fired Power Plants," Ecological Economics, Elsevier, vol. 176(C).
    72. Schneider, Nicolas & Strielkowski, Wadim, 2023. "Modelling the unit root properties of electricity data—A general note on time-domain applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    73. Ridwan Lanre Ibrahim & Usama Al-Mulali & Kazeem Bello Ajide & Abubakar Mohammed & Fatimah Ololade Bolarinwa, 2022. "Investigating the Mediating Roles of Income Level and Technological Innovation in Africa’s Sustainability Pathways Amidst Energy Transition, Resource Abundance, and Financial Inclusion," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    74. Deshan Li & Yanfen Zhao & Rongwei Wu & Jiefang Dong, 2019. "Spatiotemporal Features and Socioeconomic Drivers of PM 2.5 Concentrations in China," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    75. Mahendra Kumar Singh & Deep Mukherjee, 2019. "Drivers of greenhouse gas emissions in the United States: revisiting STIRPAT model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(6), pages 3015-3031, December.
    76. Yusuf Fatai Akorede & Rafia Afroz, 2020. "The Relationship between Urbanization, CO2 Emissions, Economic Growth and Energy Consumption in Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 491-501.
    77. Junaid Ashraf, 2022. "Do political risk and globalization undermine environmental quality? Empirical evidence from Belt and Road Initiative (BRI) countries," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(8), pages 3647-3664, December.
    78. Awan, Ashar & Abbasi, Kashif Raza & Rej, Soumen & Bandyopadhyay, Arunava & Lv, Kangjuan, 2022. "The impact of renewable energy, internet use and foreign direct investment on carbon dioxide emissions: A method of moments quantile analysis," Renewable Energy, Elsevier, vol. 189(C), pages 454-466.
    79. Zahra Nasrollahi & Mohadeseh-sadat Hashemi & Saeed Bameri & Vahid Mohamad Taghvaee, 2020. "Environmental pollution, economic growth, population, industrialization, and technology in weak and strong sustainability: using STIRPAT model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1105-1122, February.
    80. Muhammad Imran & Sajid Ali & Yousef Shahwan & Jijian Zhang & Issa Ahmad Al-Swiety, 2022. "Analyzing the Effects of Renewable and Nonrenewable Energy Usage and Technological Innovation on Environmental Sustainability: Evidence from QUAD Economies," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    81. Yening Wang & Yuantong Jiang & Yuanmao Zheng & Haowei Wang, 2019. "Assessing the Ecological Carrying Capacity Based on Revised Three-Dimensional Ecological Footprint Model in Inner Mongolia, China," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    82. Brantley Liddle, 2018. "Consumption-Based Accounting and the Trade-Carbon Emissions Nexus in Asia: A Heterogeneous, Common Factor Panel Analysis," Sustainability, MDPI, vol. 10(10), pages 1-13, October.
    83. Kilbourne, William E. & Thyroff, Anastasia, 2020. "STIRPAT for marketing: An introduction, expansion, and suggestions for future use," Journal of Business Research, Elsevier, vol. 108(C), pages 351-361.

  3. Liddle, Brantley & Messinis, George, 2014. "Revisiting carbon Kuznets curves with endogenous breaks modeling: Evidence of decoupling and saturation (but few inverted-Us) for individual OECD countries," MPRA Paper 59566, University Library of Munich, Germany.

    Cited by:

    1. Mahmoud Radwan Hussein AlZgool & Syed Mir Muhammad Shah & Umair Ahmed, 2020. "Impact of Energy consumption and Economic Growth on Environmental Performance: Implications for Green Policy Practitioners," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 655-662.
    2. Yi-Bin Chiu & Wenwen Zhang, 2023. "Moderating Effect of Financial Development on the Relationship between Renewable Energy and Carbon Emissions," Energies, MDPI, vol. 16(3), pages 1-18, February.
    3. Ansari, Mohd Arshad, 2022. "Re-visiting the Environmental Kuznets curve for ASEAN: A comparison between ecological footprint and carbon dioxide emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Liddle, Brantley & Huntington, Hillard, 2021. "There’s Technology Improvement, but is there Economy-wide Energy Leapfrogging? A Country Panel Analysis," World Development, Elsevier, vol. 140(C).
    5. Arshian Sharif & Najia Saqib & Kangyin Dong & Syed Abdul Rehman Khan, 2022. "Nexus between green technology innovation, green financing, and CO2 emissions in the G7 countries: The moderating role of social globalisation," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1934-1946, December.
    6. Firouz Fallahi, 2020. "Persistence and unit root in $$\text {CO}_{2}$$CO2 emissions: evidence from disaggregated global and regional data," Empirical Economics, Springer, vol. 58(5), pages 2155-2179, May.
    7. Xiaosan, Zhang & Qingquan, Jiang & Shoukat Iqbal, Khattak & Manzoor, Ahmad & Zia Ur, Rahman, 2021. "Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China," Energy Policy, Elsevier, vol. 155(C).
    8. Bai, Jiancheng & Han, Zhiyong & Rizvi, Syed Kumail Abbas & Naqvi, Bushra, 2023. "Green trade or green technology? The way forward for G-7 economies to achieve COP 26 targets while making competing policy choices," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    9. Meili Tang & Jia’ni Ding & Haojia Kong & Brandon J. Bethel & Decai Tang, 2022. "Influence of Green Finance on Ecological Environment Quality in Yangtze River Delta," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    10. Liddle, Brantley & Messinis, George, 2014. "Revisiting sulfur Kuznets curves with endogenous breaks modeling: Substantial evidence of inverted-Us/Vs for individual OECD countries," MPRA Paper 59565, University Library of Munich, Germany.
    11. Mundaca, Luis & Markandya, Anil, 2016. "Assessing regional progress towards a ‘Green Energy Economy’," Applied Energy, Elsevier, vol. 179(C), pages 1372-1394.
    12. Jeyhun I. Mikayilov & Fakhri J. Hasanov & Marzio Galeotti, 2018. "Decoupling of C02 Emissions and GDP: A Time-Varying Cointegration Approach," IEFE Working Papers 101, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    13. Abdullah Tirgil & Yasin Acar & Onder Ozgur, 2021. "Revisiting the environmental Kuznets curve: evidence from Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14585-14604, October.

  4. Liddle, Brantley & Messinis, George, 2014. "Revisiting sulfur Kuznets curves with endogenous breaks modeling: Substantial evidence of inverted-Us/Vs for individual OECD countries," MPRA Paper 59565, University Library of Munich, Germany.

    Cited by:

    1. Khan, Syed Abdul Rehman & Zaman, Khalid & Zhang, Yu, 2016. "The relationship between energy-resource depletion, climate change, health resources and the environmental Kuznets curve: Evidence from the panel of selected developed countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 468-477.
    2. Brantley Liddle & George Messinis, 2018. "Revisiting carbon Kuznets curves with endogenous breaks modeling: evidence of decoupling and saturation (but few inverted-Us) for individual OECD countries," Empirical Economics, Springer, vol. 54(2), pages 783-798, March.
    3. Aydin, Celil & Esen, Ömer, 2018. "Does the level of energy intensity matter in the effect of energy consumption on the growth of transition economies? Evidence from dynamic panel threshold analysis," Energy Economics, Elsevier, vol. 69(C), pages 185-195.
    4. Xiaosan, Zhang & Qingquan, Jiang & Shoukat Iqbal, Khattak & Manzoor, Ahmad & Zia Ur, Rahman, 2021. "Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China," Energy Policy, Elsevier, vol. 155(C).
    5. Eyup Dogan & Nigar Taspinar & Korhan K Gokmenoglu, 2019. "Determinants of ecological footprint in MINT countries," Energy & Environment, , vol. 30(6), pages 1065-1086, September.
    6. Silajdzic Sabina & Mehic Eldin, 2018. "Do Environmental Taxes Pay Off? The Impact of Energy and Transport Taxes on CO2 Emissions in Transition Economies," South East European Journal of Economics and Business, Sciendo, vol. 13(2), pages 126-143, December.
    7. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    8. De Vita, Glauco & Trachanas, Emmanouil, 2016. "‘Nonlinear causality between crude oil price and exchange rate: A comparative study of China and India’ — A failed replication (negative Type 1 and Type 2)," Energy Economics, Elsevier, vol. 56(C), pages 150-160.

  5. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.

    Cited by:

    1. Zhu, Penghu & Lin, Boqiang, 2022. "Do the elderly consume more energy? Evidence from the retirement policy in urban China," Energy Policy, Elsevier, vol. 165(C).
    2. Xinyu WANG & Wensen WU & Jin ZHANG & Gheorghe HURDUZEU & Teodora Odett BREAZ & Vasile Cosmin NICULA, 2022. "How are industrial sector optimization, mitigation policies and taxes contributing to carbon neutrality? Threshold Evidence from Europe," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 187-201, April.
    3. Underwood, Anthony & Zahran, Sammy, 2015. "The carbon implications of declining household scale economies," Ecological Economics, Elsevier, vol. 116(C), pages 182-190.
    4. Wen Guo & Tao Sun & Hongjun Dai, 2016. "Effect of Population Structure Change on Carbon Emission in China," Sustainability, MDPI, vol. 8(3), pages 1-20, March.
    5. Casey, Gregory & Galor, Oded, 2017. "Is faster economic growth compatible with reductions in carbon emissions? The role of diminished population growth," MPRA Paper 76164, University Library of Munich, Germany.
    6. Manasrah, Abdallah D. & Nassar, Nashaat N., 2020. "Oxy-cracking technique for producing non-combustion products from residual feedstocks and cleaning up wastewater," Applied Energy, Elsevier, vol. 280(C).
    7. Islam, Md. Monirul & Irfan, Muhammad & Shahbaz, Muhammad & Vo, Xuan Vinh, 2022. "Renewable and non-renewable energy consumption in Bangladesh: The relative influencing profiles of economic factors, urbanization, physical infrastructure and institutional quality," Renewable Energy, Elsevier, vol. 184(C), pages 1130-1149.
    8. Wang, Zhaohua & Rasool, Yasir & Zhang, Bin & Ahmed, Zahoor & Wang, Bo, 2020. "Dynamic linkage among industrialisation, urbanisation, and CO2 emissions in APEC realms: Evidence based on DSUR estimation," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 382-389.
    9. Adnan Khurshid & Abdur Rauf & Sadia Qayyum & Adrian Cantemir Calin & WenQi Duan, 2023. "Green innovation and carbon emissions: the role of carbon pricing and environmental policies in attaining sustainable development targets of carbon mitigation—evidence from Central-Eastern Europe," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8777-8798, August.
    10. Antonello Maruotti & Pierfrancesco Alaimo Di Loro, 2023. "CO2 emissions and growth: A bivariate bidimensional mean‐variance random effects model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    11. Zhou, Yang & Liu, Yansui, 2016. "Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China," Applied Energy, Elsevier, vol. 180(C), pages 800-809.
    12. Kristian Skånberg & Åsa Svenfelt, 2022. "Expanding the IPAT identity to quantify backcasting sustainability scenarios," Futures & Foresight Science, John Wiley & Sons, vol. 4(2), June.
    13. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    14. Julius Alexander McGee & Christina Ergas & Patrick Trent Greiner & Matthew Thomas Clement, 2017. "How do slums change the relationship between urbanization and the carbon intensity of well-being?," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-12, December.
    15. Shahbaz, Muhammad & Loganathan, Nanthakumar & Muzaffar, Ahmed Taneem & Ahmed, Khalid & Jabran, Muhammad Ali, 2015. "How Urbanization Affects CO2 Emissions in Malaysia? The Application of STIRPAT Model," MPRA Paper 68422, University Library of Munich, Germany, revised 15 Dec 2015.
    16. Remi Jedwab & Daniel Pereira & Mark Roberts, 2019. "Cities of Workers, Children or Seniors? Age Structure and Economic Growth in a Global Cross-Section of Cities," Working Papers 2019-13, The George Washington University, Institute for International Economic Policy.
    17. Su, Min & Wang, Qiang & Li, Rongrong & Wang, Lili, 2022. "Per capita renewable energy consumption in 116 countries: The effects of urbanization, industrialization, GDP, aging, and trade openness," Energy, Elsevier, vol. 254(PB).
    18. Koçak, Emrah & Önderol, Seyit & Khan, Kamran, 2021. "Structural change, modernization, total factor productivity, and natural resources sustainability: An assessment with quantile and non-quantile estimators," Resources Policy, Elsevier, vol. 74(C).
    19. Hannes Weber & Jennifer Dabbs Sciubba, 2019. "The Effect of Population Growth on the Environment: Evidence from European Regions," European Journal of Population, Springer;European Association for Population Studies, vol. 35(2), pages 379-402, May.
    20. Anwar, Ahsan & Sinha, Avik & Sharif, Arshian & Siddique, Muhammad & Irshad, Shoaib & Anwar, Waseem & Malik, Summaira, 2021. "The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: evidence from selected Asian countries," MPRA Paper 109613, University Library of Munich, Germany, revised 2021.
    21. Azam, Muhammad & Khan, Abdul Qayyum & Zaman, Khalid & Ahmad, Mehboob, 2015. "Factors determining energy consumption: Evidence from Indonesia, Malaysia and Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1123-1131.
    22. Buhari Doğan & Oana M. Driha & Daniel Balsalobre Lorente & Umer Shahzad, 2021. "The mitigating effects of economic complexity and renewable energy on carbon emissions in developed countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 1-12, January.
    23. Ming Yi & Mengqi Gong & Ting Wu & Yue Wang, 2018. "Nonlinear Effects of Urbanization and Outward Foreign Direct Investment on Carbon Emissions in China," Sustainability, MDPI, vol. 10(12), pages 1-11, November.
    24. Feng, Weilun & Liu, Yansui & Qu, Lulu, 2019. "Effect of land-centered urbanization on rural development: A regional analysis in China," Land Use Policy, Elsevier, vol. 87(C).
    25. Abdul Rehman & Magdalena Radulescu & Laura Mariana Cismas & Rafael Alvarado & Carmen Gabriela Secara & Claudia Tolea, 2022. "Urbanization, Economic Development, and Environmental Degradation: Investigating the Role of Renewable Energy Use," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
    26. Casey, Gregory & Galor, Oded, 2016. "Population Growth and Carbon Emissions," IZA Discussion Papers 10380, Institute of Labor Economics (IZA).
    27. Jun Zhang & Youhai Lu, 2022. "Exploring the Effects of Tourism Development on Air Pollution: Evidence from the Panel Smooth Transition Regression Model," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    28. Amarendra Singh & K. Narayanan, 2015. "Impact of economic growth and population on agrochemical use: evidence from post-liberalization India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(6), pages 1509-1525, December.
    29. Fremstad, Anders & Underwood, Anthony & Zahran, Sammy, 2018. "The Environmental Impact of Sharing: Household and Urban Economies in CO2 Emissions," Ecological Economics, Elsevier, vol. 145(C), pages 137-147.
    30. Sharif Shofirun Sharif Ali & Muhammad Rizal Razman & Azahan Awang & M. R. M. Asyraf & M. R. Ishak & R. A. Ilyas & Roderick John Lawrence, 2021. "Critical Determinants of Household Electricity Consumption in a Rapidly Growing City," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    31. Opoku, Eric Evans Osei & Dogah, Kingsley E. & Aluko, Olufemi Adewale, 2022. "The contribution of human development towards environmental sustainability," Energy Economics, Elsevier, vol. 106(C).
    32. Jonah Hall & A. K. M. Azad Hossain, 2020. "Mapping Urbanization and Evaluating Its Possible Impacts on Stream Water Quality in Chattanooga, Tennessee, Using GIS and Remote Sensing," Sustainability, MDPI, vol. 12(5), pages 1-46, March.
    33. Abbasi, Kashif Raza & Hussain, Khadim & Redulescu, Magdalena & Ozturk, Ilhan, 2021. "Does natural resources depletion and economic growth achieve the carbon neutrality target of the UK? A way forward towards sustainable development," Resources Policy, Elsevier, vol. 74(C).
    34. Lars Sorge & Anne Neumann, 2019. "The Impact of Population, Affluence, Technology, and Urbanization on CO2 Emissions across Income Groups," Discussion Papers of DIW Berlin 1812, DIW Berlin, German Institute for Economic Research.
    35. Helmut Haberl & Markus Löw & Alejandro Perez-Laborda & Sarah Matej & Barbara Plank & Dominik Wiedenhofer & Felix Creutzig & Karl-Heinz Erb & Juan Antonio Duro, 2023. "Built structures influence patterns of energy demand and CO2 emissions across countries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    36. Huiqin Jiang & Xiao Zhang & Xinxiao Shao & Jianqiang Bao, 2018. "How Do the Industrial Structure Optimization and Urbanization Development Affect Energy Consumption in Zhejiang Province of China?," Sustainability, MDPI, vol. 10(6), pages 1-12, June.
    37. Du, Xiaoyi & Wu, Dongdong & Yan, Yabo, 2023. "Prediction of electricity consumption based on GM(1,Nr) model in Jiangsu province, China," Energy, Elsevier, vol. 262(PA).
    38. Ota, Toru & Kakinaka, Makoto & Kotani, Koji, 2018. "Demographic effects on residential electricity and city gas consumption in the aging society of Japan," Energy Policy, Elsevier, vol. 115(C), pages 503-513.
    39. Abdul Rehman & Rasim Ozcan & Waqar Badshah & Magdalena Radulescu & Ilhan Ozturk, 2021. "Symmetric and Asymmetric Impacts of Commercial Energy Distribution from Key Sources on Economic Progress in Pakistan," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    40. Daniel Rozell, 2017. "Using population projections in climate change analysis," Climatic Change, Springer, vol. 142(3), pages 521-529, June.
    41. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    42. Nicola Francescutto, 2024. "Retirement decision and household's gasoline consumption: Evidence from a Regression Discontinuity Design," IRENE Working Papers 24-01, IRENE Institute of Economic Research.
    43. Zhaohan Wang & Zijie Zhao & Chengxin Wang, 2021. "Random forest analysis of factors affecting urban carbon emissions in cities within the Yangtze River Economic Belt," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-20, June.
    44. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    45. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
    46. Yong Wang & Guangchun Yang & Ying Dong & Yu Cheng & Peipei Shang, 2018. "The Scale, Structure and Influencing Factors of Total Carbon Emissions from Households in 30 Provinces of China—Based on the Extended STIRPAT Model," Energies, MDPI, vol. 11(5), pages 1-25, May.
    47. Yuan, Xiao-Chen & Sun, Xun & Zhao, Weigang & Mi, Zhifu & Wang, Bing & Wei, Yi-Ming, 2017. "Forecasting China’s regional energy demand by 2030: A Bayesian approach," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 85-95.
    48. Wang, Shaojian & Xie, Zihan & Wu, Rong & Feng, Kuishang, 2022. "How does urbanization affect the carbon intensity of human well-being? A global assessment," Applied Energy, Elsevier, vol. 312(C).
    49. Zhang, Yan & Teoh, Bak Koon & Zhang, Limao, 2023. "Exploring driving force factors of building energy use and GHG emission using a spatio-temporal regression method," Energy, Elsevier, vol. 269(C).
    50. Xueting Jin & Yu Li & Dongqi Sun & Jinzhou Zhang & Ji Zheng, 2019. "Factors Controlling Urban and Rural Indirect Carbon Dioxide Emissions in Household Consumption: A Case Study in Beijing," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
    51. Li, Shuoshuo & Liu, Yaobin & Elahi, Ehsan & Meng, Xiao & Deng, Weifeng, 2023. "A new type of urbanization policy and transition of low-carbon society: A "local- neighborhood" perspective," Land Use Policy, Elsevier, vol. 131(C).
    52. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2019. "Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach," Energy Policy, Elsevier, vol. 133(C).
    53. Theile, Philipp & Farag, Markos & Kopp, Thomas, 2022. "Does information substitute or complement energy? - A mediation analysis of their relationship in European economies," VfS Annual Conference 2022 (Basel): Big Data in Economics 264123, Verein für Socialpolitik / German Economic Association.
    54. Axel Franzen & Sebastian Mader, 2016. "Predictors of national CO2 emissions: do international commitments matter?," Climatic Change, Springer, vol. 139(3), pages 491-502, December.
    55. Diana Ivanova & Milena Büchs, 2020. "Household Sharing for Carbon and Energy Reductions: The Case of EU Countries," Energies, MDPI, vol. 13(8), pages 1-28, April.
    56. Andrew Jorgenson & Daniel Auerbach & Brett Clark, 2014. "The (De-) carbonization of urbanization, 1960–2010," Climatic Change, Springer, vol. 127(3), pages 561-575, December.
    57. Hasanov, Fakhri J. & Bulut, Cihan & Suleymanov, Elchin, 2016. "Do population age groups matter in the energy use of the oil-exporting countries?," Economic Modelling, Elsevier, vol. 54(C), pages 82-99.
    58. Zhang, Pan & Wang, Huan, 2022. "Do provincial energy policies and energy intensity targets help reduce CO2 emissions? Evidence from China," Energy, Elsevier, vol. 245(C).
    59. Adams, Samuel & Klobodu, Edem Kwame Mensah, 2017. "Urbanization, democracy, bureaucratic quality, and environmental degradation," Journal of Policy Modeling, Elsevier, vol. 39(6), pages 1035-1051.
    60. Vanesa Zorrilla-Muñoz & Marc Petz & María Silveria Agulló-Tomás, 2021. "GARCH model to estimate the impact of agricultural greenhouse gas emissions per sociodemographic factors and CAP in Spain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4675-4697, March.
    61. Bardazzi, Rossella & Pazienza, Maria Grazia, 2018. "Ageing and private transport fuel expenditure: Do generations matter?," Energy Policy, Elsevier, vol. 117(C), pages 396-405.
    62. Dalia M. Ibrahiem, 2018. "Road energy consumption, economic growth, population and urbanization in Egypt: cointegration and causality analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1053-1066, June.
    63. Giorgio Besagni & Marco Borgarello, 2020. "The socio-demographic dimensions of the private transportation emissions," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(1), pages 13-24.
    64. Paul-Razvan Șerban & Monica Dumitrașcu & Bianca Mitrică & Ines Grigorescu & Irena Mocanu & Gheorghe Kucsicsa & Alexandra Vrînceanu & Cristina Dumitrică, 2020. "The Estimation of Regional Energy Consumption Based on the Energy Consumption Rate at National Level. Case Study: The Romanian Danube Valley," Energies, MDPI, vol. 13(16), pages 1-18, August.
    65. Sun, Huaping & Samuel, Clottey Attuquaye & Kofi Amissah, Joshua Clifford & Taghizadeh-Hesary, Farhad & Mensah, Isaac Adjei, 2020. "Non-linear nexus between CO2 emissions and economic growth: A comparison of OECD and B&R countries," Energy, Elsevier, vol. 212(C).
    66. Johan-Andrés Vélez-Henao, 2020. "Does urbanization boost environmental impacts in Colombia? An extended STIRPAT–LCA approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(3), pages 851-866, June.

  6. Liddle, Brantley, 2013. "Population, Affluence, and Environmental Impact Across Development: Evidence from Panel Cointegration Modeling," MPRA Paper 52088, University Library of Munich, Germany.

    Cited by:

    1. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    2. Zhaohua Li & Ziwei Fang & Zhuyu Tang, 2020. "Effects of Imports and Exports on China's PM2.5 Pollution," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 28(6), pages 28-50, November.
    3. Muhammad, Sulaman & Long, Xingle & Salman, Muhammad & Dauda, Lamini, 2020. "Effect of urbanization and international trade on CO2 emissions across 65 belt and road initiative countries," Energy, Elsevier, vol. 196(C).
    4. Jiang Qingquan & Shoukat Iqbal Khattak & Manzoor Ahmad & Lin Ping, 2020. "A new approach to environmental sustainability: Assessing the impact of monetary policy on CO2 emissions in Asian economies," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1331-1346, September.
    5. Huang, Cheng & Han, Ji & Chen, Wei-Qiang, 2017. "Changing patterns and determinants of infrastructures’ material stocks in Chinese cities," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 47-53.
    6. Wang, Yuan & Li, Li & Kubota, Jumpei & Han, Rong & Zhu, Xiaodong & Lu, Genfa, 2016. "Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries," Applied Energy, Elsevier, vol. 168(C), pages 375-380.
    7. Laureti, Tiziana & Montero, José-María & Fernández-Avilés, Gema, 2014. "A local scale analysis on influencing factors of NOx emissions: Evidence from the Community of Madrid, Spain," Energy Policy, Elsevier, vol. 74(C), pages 557-568.
    8. Hanen Ragoubi & Zouheir Mighri, 2021. "Spillover effects of trade openness on CO2 emissions in middle‐income countries: A spatial panel data approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(3), pages 835-877, June.
    9. Wang, Yuan & Zhang, Chen & Lu, Aitong & Li, Li & He, Yanmin & ToJo, Junji & Zhu, Xiaodong, 2017. "A disaggregated analysis of the environmental Kuznets curve for industrial CO2 emissions in China," Applied Energy, Elsevier, vol. 190(C), pages 172-180.
    10. Tiancai Xing & Qichuan Jiang & Xuejiao Ma, 2017. "To Facilitate or Curb? The Role of Financial Development in China’s Carbon Emissions Reduction Process: A Novel Approach," IJERPH, MDPI, vol. 14(10), pages 1-39, October.
    11. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    12. Elheddad, Mohamed & Benjasak, Chonlakan & Deljavan, Rana & Alharthi, Majed & Almabrok, Jaballa M., 2021. "The effect of the Fourth Industrial Revolution on the environment: The relationship between electronic finance and pollution in OECD countries," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    13. Yanbin Li & Zhen Li & Min Wu & Feng Zhang & Gejirifu De, 2018. "Regional-Level Allocation of CO 2 Emission Permits in China: Evidence from the Boltzmann Distribution Method," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    14. Alexandra-Anca PURCEL, 2020. "Developing States and the Green Challenge. A Dynamic Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 173-193, July.
    15. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    16. Opoku, Eric Evans Osei & Aluko, Olufemi Adewale, 2021. "Heterogeneous effects of industrialization on the environment: Evidence from panel quantile regression," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 174-184.
    17. Sinha, Avik & Shahbaz, Muhammad & Balsalobre, Daniel, 2017. "Exploring the Relationship between Energy Usage Segregation and Environmental Degradation in N-11 Countries," MPRA Paper 81212, University Library of Munich, Germany, revised 07 Sep 2017.
    18. Brantley Liddle & George Messinis, 2018. "Revisiting carbon Kuznets curves with endogenous breaks modeling: evidence of decoupling and saturation (but few inverted-Us) for individual OECD countries," Empirical Economics, Springer, vol. 54(2), pages 783-798, March.
    19. Hannes Weber & Jennifer Dabbs Sciubba, 2019. "The Effect of Population Growth on the Environment: Evidence from European Regions," European Journal of Population, Springer;European Association for Population Studies, vol. 35(2), pages 379-402, May.
    20. Panteli Maria & Delipalla Sofia, 2022. "The Impact of Institutions on Economic and Environmental Performance: Evidence From Europe," South East European Journal of Economics and Business, Sciendo, vol. 17(2), pages 125-141, December.
    21. Annageldy Arazmuradov, 2016. "Economic prospect on carbon emissions in Commonwealth of Independent States," Economic Change and Restructuring, Springer, vol. 49(4), pages 395-427, November.
    22. Opoku, Eric Evans Osei & Dogah, Kingsley E. & Aluko, Olufemi Adewale, 2022. "The contribution of human development towards environmental sustainability," Energy Economics, Elsevier, vol. 106(C).
    23. Lars Sorge & Anne Neumann, 2019. "The Impact of Population, Affluence, Technology, and Urbanization on CO2 Emissions across Income Groups," Discussion Papers of DIW Berlin 1812, DIW Berlin, German Institute for Economic Research.
    24. Ota, Toru & Kakinaka, Makoto & Kotani, Koji, 2018. "Demographic effects on residential electricity and city gas consumption in the aging society of Japan," Energy Policy, Elsevier, vol. 115(C), pages 503-513.
    25. Xiaosan, Zhang & Qingquan, Jiang & Shoukat Iqbal, Khattak & Manzoor, Ahmad & Zia Ur, Rahman, 2021. "Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China," Energy Policy, Elsevier, vol. 155(C).
    26. Sarah Harper, 2013. "Population–Environment Interactions: European Migration, Population Composition and Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(4), pages 525-541, August.
    27. Liddle, Brantley & Messinis, George, 2014. "Revisiting sulfur Kuznets curves with endogenous breaks modeling: Substantial evidence of inverted-Us/Vs for individual OECD countries," MPRA Paper 59565, University Library of Munich, Germany.
    28. Wang, Yuan & Han, Rong & Kubota, Jumpei, 2016. "Is there an Environmental Kuznets Curve for SO2 emissions? A semi-parametric panel data analysis for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1182-1188.
    29. Chinazaekpere Nwani & Festus V. Bekun & Bright A. Gyamfi & Ekpeno L. Effiong & Andrew A. Alola, 2023. "Toward sustainable use of natural resources: Nexus between resource rents, affluence, energy intensity and carbon emissions in developing and transition economies," Natural Resources Forum, Blackwell Publishing, vol. 47(2), pages 155-176, May.
    30. Mohammad Mahfuzur Rahman & Kanij Jahan Bindu & Md. Kamrul Islam, 2018. "Linking Per Capita GDP to Energy Consumption, Ecological Footprint, and Carbon Dioxide Emission in a Developing Economy in the World: The Case of Bangladesh," Journal of Banking and Financial Dynamics, Sophia, vol. 2(1), pages 9-15.
    31. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    32. Alexandra-Anca Purcel, 2020. "Developing states and the green challenge. A dynamic approach," Post-Print hal-03182341, HAL.
    33. Andrew Jorgenson & Daniel Auerbach & Brett Clark, 2014. "The (De-) carbonization of urbanization, 1960–2010," Climatic Change, Springer, vol. 127(3), pages 561-575, December.
    34. Hasanov, Fakhri J. & Bulut, Cihan & Suleymanov, Elchin, 2016. "Do population age groups matter in the energy use of the oil-exporting countries?," Economic Modelling, Elsevier, vol. 54(C), pages 82-99.
    35. Zhibo Zhao & Tian Yuan & Xunpeng Shi & Lingdi Zhao, 2020. "Heterogeneity in the relationship between carbon emission performance and urbanization: evidence from China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1363-1380, October.
    36. Yao, Yao & Ivanovski, Kris & Inekwe, John & Smyth, Russell, 2020. "Human capital and CO2 emissions in the long run," Energy Economics, Elsevier, vol. 91(C).

  7. Liddle, Brantley & Messinis, George, 2013. "Which comes first—urbanization or economic growth? Evidence from heterogeneous panel causality tests," MPRA Paper 53983, University Library of Munich, Germany.

    Cited by:

    1. Yabo Zhao & Shaojian Wang, 2015. "The Relationship between Urbanization, Economic Growth and Energy Consumption in China: An Econometric Perspective Analysis," Sustainability, MDPI, vol. 7(5), pages 1-19, May.
    2. Lin Li & Kaixu Zhao & Xinyu Wang & Sidong Zhao & Xingguang Liu & Weiwei Li, 2022. "Spatio-Temporal Evolution and Driving Mechanism of Urbanization in Small Cities: Case Study from Guangxi," Land, MDPI, vol. 11(3), pages 1-34, March.
    3. Maddah, Majid & Ghaffari Nejad, Amir Hossein & Sargolzaei, Mostafa, 2022. "Natural resources, political competition, and economic growth: An empirical evidence from dynamic panel threshold kink analysis in Iranian provinces," Resources Policy, Elsevier, vol. 78(C).
    4. Jamiu Adetola Odugbesan & Husam Rjoub, 2020. "Relationship Among Economic Growth, Energy Consumption, CO2 Emission, and Urbanization: Evidence From MINT Countries," SAGE Open, , vol. 10(2), pages 21582440209, April.
    5. Yifan Wang & Zhongfu Yu & Yamin Hou, 2022. "The Effects of Environmental Regulation and Low-Carbon Logistics Capacity on the Level of New Urbanization in Six Central Provinces of China," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    6. Tarek Ghazouani, 2022. "The Effect of FDI Inflows, Urbanization, Industrialization, and Technological Innovation on CO2 Emissions: Evidence from Tunisia," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(4), pages 3265-3295, December.
    7. Cheng-Yih Hong & Yu-Shuang Yen & Tsai-Rong Lee, 2019. "The Spillover Effects of Investment, Economic Growth and Electricity Consumption: An Application Mathematical Dynamic Industry-Related Models Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 313-319.
    8. Doğan, Buhari & Ferraz, Diogo & Gupta, Monika & Duc Huynh, Toan Luu & Shahzadi, Irum, 2022. "Exploring the effects of import diversification on energy efficiency: Evidence from the OECD economies," Renewable Energy, Elsevier, vol. 189(C), pages 639-650.
    9. Grekou, Carl & Owoundi, Ferdinand, 2020. "Understanding how foreign direct investment inflows impact urbanization in Africa," International Economics, Elsevier, vol. 164(C), pages 48-68.
    10. Rezwanul Hasan Rana & Khorshed Alam & Jeff Gow, 2020. "Health expenditure and gross domestic product: causality analysis by income level," International Journal of Health Economics and Management, Springer, vol. 20(1), pages 55-77, March.
    11. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Jamiu Adetola Odugbesan & Gbenga Daniel Akinsola & Wing-Keung Wong & Husam Rjoub, 2021. "Sustainability of Energy-Induced Growth Nexus in Brazil: Do Carbon Emissions and Urbanization Matter?," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    12. Liddle, Brantley & Sadorsky, Perry, 2017. "How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions?," Applied Energy, Elsevier, vol. 197(C), pages 212-221.
    13. Lars Sorge & Anne Neumann, 2019. "The Impact of Population, Affluence, Technology, and Urbanization on CO2 Emissions across Income Groups," Discussion Papers of DIW Berlin 1812, DIW Berlin, German Institute for Economic Research.
    14. . OLABISI, Olabode E & LAU, Evan, 2018. "Causality Testing between Trade Openness, Foreign Direct Investment and Economic Growth: Fresh Evidence from Sub-Saharan African Countries," Economia Internazionale / International Economics, Camera di Commercio Industria Artigianato Agricoltura di Genova, vol. 71(4), pages 437-464.
    15. Sarah Jacobs & Oladipo Olalekan David & Abigail Stiglingh-Van Wyk, 2023. "The Impact of Urbanization on Economic Growth in Gauteng Province, South Africa," International Journal of Economics and Financial Issues, Econjournals, vol. 13(2), pages 1-11, March.
    16. Jha, Amit Prakash & Mahajan, Aarushi & Singh, Sanjay Kumar & Kumar, Piyush, 2022. "Renewable energy proliferation for sustainable development: Role of cross-border electricity trade," Renewable Energy, Elsevier, vol. 201(P1), pages 1189-1199.
    17. Feng Dong & Bolin Yu & Jixiong Zhang, 2018. "What Contributes to Regional Disparities of Energy Consumption in China? Evidence from Quantile Regression-Shapley Decomposition Approach," Sustainability, MDPI, vol. 10(6), pages 1-26, May.
    18. Mohammed Musah & Yusheng Kong & Isaac Adjei Mensah & Stephen Kwadwo Antwi & Mary Donkor, 2021. "The connection between urbanization and carbon emissions: a panel evidence from West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11525-11552, August.

  8. Liddle, Brantley, 2013. "Urban Transport Pollution: Revisiting the Environmental Kuznets Curve," MPRA Paper 53632, University Library of Munich, Germany.

    Cited by:

    1. Cátia Sousa & Catarina Roseta‐Palma & Luís Filipe Martins, 2015. "Economic growth and transport: On the road to sustainability," Natural Resources Forum, Blackwell Publishing, vol. 39(1), pages 3-14, February.

  9. Liddle, Brantley, 2013. "Urban Density and Climate Change: A STIRPAT Analysis using City-level Data," MPRA Paper 52089, University Library of Munich, Germany.

    Cited by:

    1. Wang, Changjian & Wang, Fei & Zhang, Xinlin & Yang, Yu & Su, Yongxian & Ye, Yuyao & Zhang, Hongou, 2017. "Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 51-61.
    2. Sakariyahu, Rilwan & Lawal, Rodiat & Etudaiye-Muhtar, Oyebola Fatima & Ajide, Folorunsho Monsuru, 2023. "Reflections on COP27: How do technological innovations and economic freedom affect environmental quality in Africa?," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    3. Jiaying Peng & Yuhang Zheng & Ke Mao, 2021. "Heterogeneous Impacts of Extreme Climate Risks on Global Energy Consumption Transition: An International Comparative Study," Energies, MDPI, vol. 14(14), pages 1-18, July.
    4. Laureti, Tiziana & Montero, José-María & Fernández-Avilés, Gema, 2014. "A local scale analysis on influencing factors of NOx emissions: Evidence from the Community of Madrid, Spain," Energy Policy, Elsevier, vol. 74(C), pages 557-568.
    5. Liddle, Brantley, 2013. "Urban Transport Pollution: Revisiting the Environmental Kuznets Curve," MPRA Paper 53632, University Library of Munich, Germany.
    6. Liu, Jingming & Hou, Xianhui & Wang, Zhanqi & Shen, Yue, 2021. "Study the effect of industrial structure optimization on urban land-use efficiency in China," Land Use Policy, Elsevier, vol. 105(C).
    7. Haibin Xia & Hui Wang & Guangxing Ji, 2019. "Regional Inequality and Influencing Factors of Primary PM Emissions in the Yangtze River Delta, China," Sustainability, MDPI, vol. 11(8), pages 1-14, April.
    8. Underwood, Anthony & Fremstad, Anders, 2018. "Does sharing backfire? A decomposition of household and urban economies in CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 404-413.
    9. Xiaodong Pei & Jing Wu & Junbo Xue & Jincai Zhao & Changxin Liu & Yuan Tian, 2022. "Assessment of Cities’ Adaptation to Climate Change and Its Relationship with Urbanization in China," Sustainability, MDPI, vol. 14(4), pages 1-26, February.
    10. Azam, Muhammad & Khan, Abdul Qayyum & Zaman, Khalid & Ahmad, Mehboob, 2015. "Factors determining energy consumption: Evidence from Indonesia, Malaysia and Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1123-1131.
    11. Fremstad, Anders & Underwood, Anthony & Zahran, Sammy, 2018. "The Environmental Impact of Sharing: Household and Urban Economies in CO2 Emissions," Ecological Economics, Elsevier, vol. 145(C), pages 137-147.
    12. Wang, Shaojian & Zeng, Jingyuan & Huang, Yongyuan & Shi, Chenyi & Zhan, Peiyu, 2018. "The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis," Applied Energy, Elsevier, vol. 228(C), pages 1693-1706.
    13. Sohani Liyanage & Hussein Dia & Rusul Abduljabbar & Saeed Asadi Bagloee, 2019. "Flexible Mobility On-Demand: An Environmental Scan," Sustainability, MDPI, vol. 11(5), pages 1-39, February.
    14. Mattioli, Giulio & Lucas, Karen & Marsden, Greg, 2017. "Transport poverty and fuel poverty in the UK: From analogy to comparison," Transport Policy, Elsevier, vol. 59(C), pages 93-105.
    15. Liddle, Brantley & Lung, Sidney, 2013. "Might electricity consumption cause urbanization instead? Evidence from heterogeneous panel long-run causality tests," MPRA Paper 52333, University Library of Munich, Germany.
    16. Liddle, Brantley & Messinis, George, 2013. "Which comes first—urbanization or economic growth? Evidence from heterogeneous panel causality tests," MPRA Paper 53983, University Library of Munich, Germany.
    17. Xiaosan, Zhang & Qingquan, Jiang & Shoukat Iqbal, Khattak & Manzoor, Ahmad & Zia Ur, Rahman, 2021. "Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China," Energy Policy, Elsevier, vol. 155(C).
    18. Daniel Rozell, 2017. "Using population projections in climate change analysis," Climatic Change, Springer, vol. 142(3), pages 521-529, June.
    19. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    20. Shahbaz, Muhammad & Balsalobre, Daniel & Shahzad, Syed Jawad Hussain, 2018. "The Influencing Factors of CO2 Emissions and the Role of Biomass Energy Consumption: Statistical Experience from G-7 Countries," MPRA Paper 87456, University Library of Munich, Germany, revised 14 Jun 2018.
    21. Sharma, Rajesh & Sinha, Avik & Kautish, Pradeep, 2020. "Does renewable energy consumption reduce ecological footprint? Evidence from eight developing countries of Asia," MPRA Paper 104277, University Library of Munich, Germany, revised 2020.
    22. Yang Song & Kevin R. Gurney, 2020. "The Relationship between On-Road FFCO 2 Emissions and Socio-Economic/Urban Form Factors for Global Cities: Significance, Robustness and Implications," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    23. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    24. Xueting Jin & Yu Li & Dongqi Sun & Jinzhou Zhang & Ji Zheng, 2019. "Factors Controlling Urban and Rural Indirect Carbon Dioxide Emissions in Household Consumption: A Case Study in Beijing," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
    25. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    26. Thomas W. Crawford, 2020. "Urban Form as a Technological Driver of Carbon Dioxide Emission: A Structural Human Ecology Analysis of Onroad and Residential Sectors in the Conterminous U.S," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    27. Rafael Morales-Lage & Aurelia Bengochea-Morancho & Inmaculada Martínez-Zarzoso, 2016. "The determinants of CO2 emissions: evidence from European countries," Working Papers 2016/04, Economics Department, Universitat Jaume I, Castellón (Spain).
    28. Huali Sun & Mengzhen Li & Yaofeng Xue, 2019. "Examining the Factors Influencing Transport Sector CO 2 Emissions and Their Efficiency in Central China," Sustainability, MDPI, vol. 11(17), pages 1-15, August.
    29. Moon-Jung Kim & Yu-Sang Chang & Su-Min Kim, 2021. "Impact of Income, Density, and Population Size on PM 2.5 Pollutions: A Scaling Analysis of 254 Large Cities in Six Developed Countries," IJERPH, MDPI, vol. 18(17), pages 1-30, August.
    30. Mattioli, Giulio & Lucas, Karen & Marsden, Greg, 2018. "Reprint of Transport poverty and fuel poverty in the UK: From analogy to comparison," Transport Policy, Elsevier, vol. 65(C), pages 114-125.
    31. Muhammad Imran & Sajid Ali & Yousef Shahwan & Jijian Zhang & Issa Ahmad Al-Swiety, 2022. "Analyzing the Effects of Renewable and Nonrenewable Energy Usage and Technological Innovation on Environmental Sustainability: Evidence from QUAD Economies," Sustainability, MDPI, vol. 14(23), pages 1-16, November.

  10. Liddle, Brantley & Lung, Sidney, 2013. "Might electricity consumption cause urbanization instead? Evidence from heterogeneous panel long-run causality tests," MPRA Paper 52333, University Library of Munich, Germany.

    Cited by:

    1. Rochna Arora & Baljit Kaur, 2022. "Is Urbanisation Sans Infrastructure A Myth? Evidence From India," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 67(232), pages 81-104, January –.
    2. SBIA, Rashid & Shahbaz, Muhammad & Ozturk, Ilhan, 2016. "Economic Growth, Financial Development, Urbanization and Electricity Consumption Nexus in UAE," MPRA Paper 74790, University Library of Munich, Germany, revised 24 Oct 2016.
    3. Liddle, Brantley & Messinis, George, 2013. "Which comes first—urbanization or economic growth? Evidence from heterogeneous panel causality tests," MPRA Paper 53983, University Library of Munich, Germany.
    4. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    5. Shahbaz, Muhammad & Chaudhary, A.R. & Ozturk, Ilhan, 2017. "Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model," Energy, Elsevier, vol. 122(C), pages 83-93.

  11. Liddle, Brantley, 2012. "OECD Energy Intensity: Measures, Trends, and Convergence," MPRA Paper 52085, University Library of Munich, Germany.

    Cited by:

    1. Mussini, Mauro, 2020. "Inequality and convergence in energy intensity in the European Union," Applied Energy, Elsevier, vol. 261(C).
    2. Mohammadi, Hassan & Ram, Rati, 2017. "Convergence in energy consumption per capita across the US states, 1970–2013: An exploration through selected parametric and non-parametric methods," Energy Economics, Elsevier, vol. 62(C), pages 404-410.
    3. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2023. "Spatial spillovers and world energy intensity convergence," Energy Economics, Elsevier, vol. 124(C).
    4. Yetkiner, Hakan & Berk, Istemi, 2023. "Energy intensity and directed fiscal policy," Economic Systems, Elsevier, vol. 47(2).
    5. Bollino, Carlo Andrea & Galeotti, Marzio, 2021. "On the Water-Energy-Food Nexus: Is there Multivariate Convergence?," FEEM Working Papers 309919, Fondazione Eni Enrico Mattei (FEEM).
    6. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
    7. Sebestyénné Szép, Tekla, 2016. "Energetikai konvergencia az Energia 2020 stratégia tükrében. A konvergenciaszámítások alkalmazásának egy alternatív lehetősége [Energy convergence in the light of the Energy 2020 strategy. An alter," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 564-587.
    8. Marco Sakai & Paul E. Brockway & John R. Barrett & Peter G. Taylor, 2018. "Thermodynamic Efficiency Gains and their Role as a Key ‘Engine of Economic Growth’," Energies, MDPI, vol. 12(1), pages 1-14, December.
    9. Parker, Steven & Liddle, Brantley, 2017. "Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries," Energy Economics, Elsevier, vol. 62(C), pages 338-346.
    10. Menegaki, Angeliki N. & Ahmad, Nisar & Aghdam, Reza FathollahZadeh & Naz, Amber, 2021. "The convergence in various dimensions of energy-economy-environment linkages: A comprehensive citation-based systematic literature review," Energy Economics, Elsevier, vol. 104(C).
    11. Azhgaliyeva, Dina & Liu, Yang & Liddle, Brantley, 2020. "An empirical analysis of energy intensity and the role of policy instruments," Energy Policy, Elsevier, vol. 145(C).
    12. Bhattacharya, Mita & Inekwe, John Nkwoma & Sadorsky, Perry & Saha, Anjan, 2018. "Convergence of energy productivity across Indian states and territories," Energy Economics, Elsevier, vol. 74(C), pages 427-440.
    13. Bello, Mufutau Opeyemi & Ch'ng, Kean Siang, 2022. "Convergence in energy intensity of GDP: Evidence from West African countries," Energy, Elsevier, vol. 254(PA).
    14. Perillo, Frederico & Pereira da Silva, Patrícia & Cerqueira, Pedro A., 2022. "Decoupling efficiency from electricity intensity: An empirical assessment in the EU," Energy Policy, Elsevier, vol. 169(C).

  12. Liddle, Brantley, 2012. "The Systemic, Long-run Relation among Gasoline Demand, Gasoline Price, Income, and Vehicle Ownership in OECD Countries: Evidence from Panel Cointegration and Causality Modeling," MPRA Paper 52081, University Library of Munich, Germany.

    Cited by:

    1. Jeyhun I. Mikayilov & Shahriyar Mukhtarov & Jeyhun Mammadov, 2020. "Gasoline Demand Elasticities at the Backdrop of Lower Oil Prices: Fuel-Subsidizing Country Case," Energies, MDPI, vol. 13(24), pages 1-18, December.
    2. Zhao, Pengjun & Bai, Yu, 2019. "The gap between and determinants of growth in car ownership in urban and rural areas of China: A longitudinal data case study," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    3. Liddle, Brantley, 2013. "Population, Affluence, and Environmental Impact Across Development: Evidence from Panel Cointegration Modeling," MPRA Paper 52088, University Library of Munich, Germany.
    4. Bakhat, Mohcine & Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "Elasticities of transport fuels at times of economic crisis: An empirical analysis for Spain," Energy Economics, Elsevier, vol. 68(S1), pages 66-80.
    5. Nasreen, Samia & Mbarek, Mounir Ben & Atiq-ur-Rehman, Muhammad, 2020. "Long-run causal relationship between economic growth, transport energy consumption and environmental quality in Asian countries: Evidence from heterogeneous panel methods," Energy, Elsevier, vol. 192(C).
    6. Curl, Angela & Clark, Julie & Kearns, Ade, 2018. "Household car adoption and financial distress in deprived urban communities: A case of forced car ownership?," Transport Policy, Elsevier, vol. 65(C), pages 61-71.
    7. Ben Jebli, Mehdi & Belloumi, Mounir, 2017. "Investigation of the causal relationships between combustible renewables and waste consumption and CO2 emissions in the case of Tunisian maritime and rail transport," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 820-829.
    8. Ben Jebli, Mehdi, 2015. "The Impact of Combustible Renewables and Waste Consumption and Transport on the Environmental Degradation: The Case of Tunisia," MPRA Paper 68038, University Library of Munich, Germany.
    9. Kakali Kanjilal & Sajal Ghosh, 2018. "Revisiting income and price elasticity of gasoline demand in India: new evidence from cointegration tests," Empirical Economics, Springer, vol. 55(4), pages 1869-1888, December.
    10. Scott, K. Rebecca, 2013. "Demand and Price Uncertainty: Rational Habits in International Gasoline Demand," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt25q4w08n, Department of Agricultural & Resource Economics, UC Berkeley.
    11. Ulfarsson, Gudmundur F. & Steinbrenner, Anne & Valsson, Trausti & Kim, Sungyop, 2015. "Urban household travel behavior in a time of economic crisis: Changes in trip making and transit importance," Journal of Transport Geography, Elsevier, vol. 49(C), pages 68-75.
    12. Ming Zhong & Qi Tang & Xiaofeng Ma & John Douglas Hunt, 2019. "Scissors Difference of Socioeconomics, Travel and Space Consumption Behavior of Rural and Urban Households and Its Impact on Modeling Accuracy and Data Requirements," Sustainability, MDPI, vol. 11(19), pages 1-18, October.
    13. Brantley Liddle, 2017. "Accounting for Nonlinearity, Asymmetry, Heterogeneity, and Cross-Sectional Dependence in Energy Modeling: US State-Level Panel Analysis," Economies, MDPI, vol. 5(3), pages 1-11, August.
    14. Zimmer, Anne & Koch, Nicolas, 2017. "Fuel consumption dynamics in Europe: Tax reform implications for air pollution and carbon emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 22-50.
    15. Liddle, Brantley & Lung, Sidney, 2015. "Revisiting energy consumption and GDP causality: Importance of a priori hypothesis testing, disaggregated data, and heterogeneous panels," Applied Energy, Elsevier, vol. 142(C), pages 44-55.
    16. Liddle, Brantley & Lung, Sidney, 2013. "The long-run causal relationship between transport energy consumption and GDP: Evidence from heterogeneous panel methods robust to cross-sectional dependence," Economics Letters, Elsevier, vol. 121(3), pages 524-527.
    17. Kyoung-Min Lim & Myunghwan Kim & Chang Seob Kim & Seung-Hoon Yoo, 2012. "Short-Run and Long-Run Elasticities of Diesel Demand in Korea," Energies, MDPI, vol. 5(12), pages 1-10, November.
    18. Dalia M. Ibrahiem, 2018. "Road energy consumption, economic growth, population and urbanization in Egypt: cointegration and causality analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1053-1066, June.
    19. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.

  13. Liddle, Brantley, 2011. "Breaks and Trends in OECD Countries’ Energy-GDP Ratios," 2011 Conference (55th), February 8-11, 2011, Melbourne, Australia 100578, Australian Agricultural and Resource Economics Society.

    Cited by:

    1. Jaco P. Weideman & Roula Inglesi-Lotz, 2016. "Structural Breaks in Renewable Energy in South Africa: A Bai and Perron Break Test Application," Working Papers 201636, University of Pretoria, Department of Economics.
    2. Liddle, Brantley & Parker, Steven & Hasanov, Fakhri, 2023. "Why has the OECD long-run GDP elasticity of economy-wide electricity demand declined? Because the electrification of energy services has saturated," Energy Economics, Elsevier, vol. 125(C).
    3. Brantley Liddle & George Messinis, 2018. "Revisiting carbon Kuznets curves with endogenous breaks modeling: evidence of decoupling and saturation (but few inverted-Us) for individual OECD countries," Empirical Economics, Springer, vol. 54(2), pages 783-798, March.
    4. Weideman, J. & Inglesi-Lotz, R. & Van Heerden, J., 2017. "Structural breaks in renewable energy in South Africa: A Bai & Perron break test application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 945-954.
    5. Lo Giudice Gino Moncada & Francesco Asdrubali & Antonella Rotili, 2013. "Influence of new fac tors on global energy prospects in the medium term: compar ison among the 2010, 2011 and 2012 editions of the IEA?s World Energy Outlook reports," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(3), pages 67-89.
    6. Wang, Yuan & Shi, Rui & Zhang, Chen & He, Yanmin & Jiang, Hongyi & Kubota, Jumpei, 2022. "Structural changes and trends in China's renewable electricity production in the policy evolution process," Renewable Energy, Elsevier, vol. 182(C), pages 879-886.
    7. Liddle, Brantley & Messinis, George, 2014. "Revisiting sulfur Kuznets curves with endogenous breaks modeling: Substantial evidence of inverted-Us/Vs for individual OECD countries," MPRA Paper 59565, University Library of Munich, Germany.
    8. Minyoung Jo & Sangyeol Lee, 2021. "On CUSUM test for dynamic panel models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 515-542, June.
    9. Hosseini, Seyed Hossein & Shakouri G., Hamed, 2016. "A study on the future of unconventional oil development under different oil price scenarios: A system dynamics approach," Energy Policy, Elsevier, vol. 91(C), pages 64-74.
    10. Chang, Tsangyao & Gupta, Rangan & Inglesi-Lotz, Roula & Simo-Kengne, Beatrice & Smithers, Devon & Trembling, Amy, 2015. "Renewable energy and growth: Evidence from heterogeneous panel of G7 countries using Granger causality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1405-1412.
    11. Janesh Sami, 2020. "Time Series Dynamics of Sugar Export Earnings in Fiji with Multiple Endogenous Structural Breaks: Implications for EU Sugar and Industry Reforms," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(1), pages 169-189, March.
    12. Kilbourne, William E. & Thyroff, Anastasia, 2020. "STIRPAT for marketing: An introduction, expansion, and suggestions for future use," Journal of Business Research, Elsevier, vol. 108(C), pages 351-361.
    13. Chen, Zhongfei & Huang, Wanjing & Zheng, Xian, 2019. "The decline in energy intensity: Does financial development matter?," Energy Policy, Elsevier, vol. 134(C).

  14. Liddle, Brantley & Lung, Sidney, 2010. "Age-Structure, Urbanization, and Climate Change in Developed Countries: Revisiting STIRPAT for Disaggregated Population and Consumption-Related Environmental Impacts," MPRA Paper 59579, University Library of Munich, Germany.

    Cited by:

    1. Wei, Honghong & Lahiri, Radhika, 2022. "Urbanization, energy-use intensity and emissions: A sectoral approach," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 667-684.
    2. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    3. Rafiq, Shuddhasattwa & Salim, Ruhul & Nielsen, Ingrid, 2016. "Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies," Energy Economics, Elsevier, vol. 56(C), pages 20-28.
    4. Liddle, Brantley, 2013. "Urban density and climate change: a STIRPAT analysis using city-level data," Journal of Transport Geography, Elsevier, vol. 28(C), pages 22-29.
    5. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    6. Stephen K. Dimnwobi & Chukwunonso Ekesiobi & Chekwube V. Madichie & Simplice A. Asongu, 2021. "Population Dynamics and Environmental Quality in Africa," Working Papers 21/047, European Xtramile Centre of African Studies (EXCAS).
    7. Jing Jin & Duozhang Chen, 2022. "Research on the Impact of the County-to-District Reform on Environmental Pollution in China," Sustainability, MDPI, vol. 14(11), pages 1-12, May.
    8. Magazzino, Cosimo & Drago, Carlo & Schneider, Nicolas, 2023. "Evidence of supply security and sustainability challenges in Nigeria's power sector," LSE Research Online Documents on Economics 119355, London School of Economics and Political Science, LSE Library.
    9. Jiangsheng Chen & Hong Yang, 2016. "Geographical Mobility, Income, Life Satisfaction and Family Size Preferences: An Empirical Study on Rural Households in Shaanxi and Henan Provinces in China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 129(1), pages 277-290, October.
    10. Underwood, Anthony & Zahran, Sammy, 2015. "The carbon implications of declining household scale economies," Ecological Economics, Elsevier, vol. 116(C), pages 182-190.
    11. Wen Guo & Tao Sun & Hongjun Dai, 2016. "Effect of Population Structure Change on Carbon Emission in China," Sustainability, MDPI, vol. 8(3), pages 1-20, March.
    12. Liddle, Brantley, 2013. "Population, Affluence, and Environmental Impact Across Development: Evidence from Panel Cointegration Modeling," MPRA Paper 52088, University Library of Munich, Germany.
    13. Zhang, Chuanguo & Tan, Zheng, 2016. "The relationships between population factors and China's carbon emissions: Does population aging matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1018-1025.
    14. Ng Thanh Mai & Le Thanh Ha & Tr?n Thi Mai Hoa & Nguyen Thi Thanh Huyen, 2022. "Effects of Digitalization on Natural Resource Use in European Countries: Does Economic Complexity Matter?," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 77-92, May.
    15. Franco, Sainu & Mandla, Venkata Ravibabu & Ram Mohan Rao, K., 2017. "Urbanization, energy consumption and emissions in the Indian context A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 898-907.
    16. Casey, Gregory & Galor, Oded, 2017. "Is faster economic growth compatible with reductions in carbon emissions? The role of diminished population growth," MPRA Paper 76164, University Library of Munich, Germany.
    17. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    18. Zhang, Chuanguo & Liu, Cong, 2015. "The impact of ICT industry on CO2 emissions: A regional analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 12-19.
    19. Islam, Md. Monirul & Irfan, Muhammad & Shahbaz, Muhammad & Vo, Xuan Vinh, 2022. "Renewable and non-renewable energy consumption in Bangladesh: The relative influencing profiles of economic factors, urbanization, physical infrastructure and institutional quality," Renewable Energy, Elsevier, vol. 184(C), pages 1130-1149.
    20. Lisa Gianmoena & Vicente Rios, 2018. "The Determinants of CO2 Emissions Differentials with Cross-Country Interaction Effects: A Dynamic Spatial Panel Data Bayesian Model Averaging Approach," Discussion Papers 2018/234, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    21. Qingran Guo & Cuicui Ding & Tingting Guo & Shuaitao Liu, 2022. "Dynamic Effects and Regional Differences of Industrialization and Urbanization on China’s Energy Intensity under the Background of “Dual Carbon”," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    22. Xie, Jia Yu & Suh, Dong Hee, 2021. "Examining the Determinants of Air Pollution: Implications of Economic Growth and Renewable Energy Consumption," 2021 Annual Meeting, August 1-3, Austin, Texas 313892, Agricultural and Applied Economics Association.
    23. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    24. Yang, Yingchun & Liu, Jianghua & Lin, Yingying & Li, Qiongyuan, 2019. "The impact of urbanization on China’s residential energy consumption," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 170-182.
    25. Ekpeno L. Effiong, 2018. "On the urbanization-pollution nexus in Africa: a semiparametric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 445-456, January.
    26. Wang, Yuan & Li, Li & Kubota, Jumpei & Han, Rong & Zhu, Xiaodong & Lu, Genfa, 2016. "Does urbanization lead to more carbon emission? Evidence from a panel of BRICS countries," Applied Energy, Elsevier, vol. 168(C), pages 375-380.
    27. Usman Mehmood & Ephraim Bonah Agyekum & Solomon Eghosa Uhunamure & Karabo Shale & Ayesha Mariam, 2022. "Evaluating the Influences of Natural Resources and Ageing People on CO 2 Emissions in G-11 Nations: Application of CS-ARDL Approach," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    28. Zhou, Yang & Liu, Yansui, 2016. "Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China," Applied Energy, Elsevier, vol. 180(C), pages 800-809.
    29. Fang, Wen Shwo & Miller, Stephen M. & Yeh, Chih-Chuan, 2012. "The effect of ESCOs on energy use," Energy Policy, Elsevier, vol. 51(C), pages 558-568.
    30. Charfeddine, Lanouar & Ben Khediri, Karim, 2016. "Financial development and environmental quality in UAE: Cointegration with structural breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1322-1335.
    31. Decai Tang & Yan Zhang & Brandon J. Bethel, 2019. "An Analysis of Disparities and Driving Factors of Carbon Emissions in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 11(8), pages 1-13, April.
    32. Li Tian & Gaofeng Xu & Chenjing Fan & Yue Zhang & Chaolin Gu & Yang Zhang, 2019. "Analyzing Mega City-Regions through Integrating Urbanization and Eco-Environment Systems: A Case Study of the Beijing-Tianjin-Hebei Region," IJERPH, MDPI, vol. 16(1), pages 1-24, January.
    33. Lei Liu & Yue Xu & Zhaotian Yang & Ying Li, 2023. "The interrelationship between environmental NGO development and environmental condition in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8487-8516, August.
    34. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    35. Sun Guoyan & Asadullah Khaskheli & Syed Ali Raza & Nida Shah, 2022. "Analyzing the association between the foreign direct investment and carbon emissions in MENA countries: a pathway to sustainable development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4226-4243, March.
    36. Martínez-Zarzoso, Inmaculada & Maruotti, Antonello, 2011. "The impact of urbanization on CO2 emissions: Evidence from developing countries," Ecological Economics, Elsevier, vol. 70(7), pages 1344-1353, May.
    37. Sun, Yunpeng & Bao, Qun & Siao-Yun, Wei & Islam, Misbah ul & Razzaq, Asif, 2022. "Renewable energy transition and environmental sustainability through economic complexity in BRICS countries: Fresh insights from novel Method of Moments Quantile regression," Renewable Energy, Elsevier, vol. 184(C), pages 1165-1176.
    38. Jaehyeok Kim & Hyungwoo Lim & Ha-Hyun Jo, 2020. "Do Aging and Low Fertility Reduce Carbon Emissions in Korea? Evidence from IPAT Augmented EKC Analysis," IJERPH, MDPI, vol. 17(8), pages 1-15, April.
    39. Ha-Hyun Jo & Minwoo Jang & Jaehyeok Kim, 2020. "How Population Age Distribution Affects Future Electricity Demand in Korea: Applying Population Polynomial Function," Energies, MDPI, vol. 13(20), pages 1-17, October.
    40. Shahbaz, Muhammad & Loganathan, Nanthakumar & Muzaffar, Ahmed Taneem & Ahmed, Khalid & Jabran, Muhammad Ali, 2015. "How Urbanization Affects CO2 Emissions in Malaysia? The Application of STIRPAT Model," MPRA Paper 68422, University Library of Munich, Germany, revised 15 Dec 2015.
    41. Liquan Xu & Yong Geng & Dong Wu & Chenyi Zhang & Shijiang Xiao, 2021. "Carbon Footprint of Residents’ Housing Consumption and Its Driving Forces in China," Energies, MDPI, vol. 14(13), pages 1-16, June.
    42. Lin, Boqiang & Li, Xuehui, 2011. "The effect of carbon tax on per capita CO2 emissions," Energy Policy, Elsevier, vol. 39(9), pages 5137-5146, September.
    43. Yu Ma & Deping Li & Liang Zhou, 2021. "Health Impact Attributable to Improvement of PM 2.5 Pollution from 2014–2018 and Its Potential Benefits by 2030 in China," Sustainability, MDPI, vol. 13(17), pages 1-18, August.
    44. G. Qi & Q. Wang & W. Zhou & H. Ding & X. Wang & L. Qi & Y. Wang & S. Li & L. Dai, 2011. "Moisture effect on carbon and nitrogen mineralization in topsoil of Changbai Mountain, Northeast China," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 57(8), pages 340-348.
    45. Poumanyvong, Phetkeo & Kaneko, Shinji & Dhakal, Shobhakar, 2012. "Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries," Energy Policy, Elsevier, vol. 46(C), pages 268-277.
    46. Ronald R. Kumar & Peter J. Stauvermann, 2019. "The Effects of a Revenue-Neutral Child Subsidy Tax Mechanism on Growth and GHG Emissions," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    47. James R. Elliott & Matthew Thomas Clement, 2014. "Urbanization and Carbon Emissions: A Nationwide Study of Local Countervailing Effects in the United States," Social Science Quarterly, Southwestern Social Science Association, vol. 95(3), pages 795-816, September.
    48. Bashir, Muhammad Farhan & Pan, Yanchun & Shahbaz, Muhammad & Ghosh, Sudeshna, 2023. "How energy transition and environmental innovation ensure environmental sustainability? Contextual evidence from Top-10 manufacturing countries," Renewable Energy, Elsevier, vol. 204(C), pages 697-709.
    49. Pengyan Zhang & Jianjian He & Xin Hong & Wei Zhang & Chengzhe Qin & Bo Pang & Yanyan Li & Yu Liu, 2017. "Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    50. Saud, Shah & Haseeb, Abdul & Zafar, Muhammad Wasif & Li, Huiyun, 2023. "Articulating natural resource abundance, economic complexity, education and environmental sustainability in MENA countries: Evidence from advanced panel estimation," Resources Policy, Elsevier, vol. 80(C).
    51. Hu, Wei & Fan, Yuemin, 2020. "City size and energy conservation: Do large cities in China consume more energy?," Energy Economics, Elsevier, vol. 92(C).
    52. Okada, Akira, 2012. "Is an increased elderly population related to decreased CO2 emissions from road transportation?," Energy Policy, Elsevier, vol. 45(C), pages 286-292.
    53. Grekou, Carl & Owoundi, Ferdinand, 2020. "Understanding how foreign direct investment inflows impact urbanization in Africa," International Economics, Elsevier, vol. 164(C), pages 48-68.
    54. Buhari Doğan & Oana M. Driha & Daniel Balsalobre Lorente & Umer Shahzad, 2021. "The mitigating effects of economic complexity and renewable energy on carbon emissions in developed countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 1-12, January.
    55. Fatemeh Dehdar & Nuno Silva & José Alberto Fuinhas & Matheus Koengkan & Nazia Nazeer, 2022. "The Impact of Technology and Government Policies on OECD Carbon Dioxide Emissions," Energies, MDPI, vol. 15(22), pages 1-17, November.
    56. Casey, Gregory & Galor, Oded, 2016. "Population Growth and Carbon Emissions," IZA Discussion Papers 10380, Institute of Labor Economics (IZA).
    57. Abdallh, Atif Awad & Abugamos, Hoda, 2017. "A semi-parametric panel data analysis on the urbanisation-carbon emissions nexus for the MENA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1350-1356.
    58. Yulan Lv & Wei Chen & Jianquan Cheng, 2019. "Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis," Sustainability, MDPI, vol. 11(11), pages 1-20, June.
    59. Charfeddine, Lanouar & Mrabet, Zouhair, 2017. "The impact of economic development and social-political factors on ecological footprint: A panel data analysis for 15 MENA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 138-154.
    60. Jaehyeok Kim & Minwoo Jang & Donghyun Shin, 2019. "Examining the Role of Population Age Structure upon Residential Electricity Demand: A Case from Korea," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    61. Sharif Shofirun Sharif Ali & Muhammad Rizal Razman & Azahan Awang & M. R. M. Asyraf & M. R. Ishak & R. A. Ilyas & Roderick John Lawrence, 2021. "Critical Determinants of Household Electricity Consumption in a Rapidly Growing City," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    62. Charfeddine, Lanouar, 2017. "The impact of energy consumption and economic development on Ecological Footprint and CO2 emissions: Evidence from a Markov Switching Equilibrium Correction Model," Energy Economics, Elsevier, vol. 65(C), pages 355-374.
    63. Chulin Pan & Huayi Wang & Hongpeng Guo & Hong Pan, 2021. "How Do the Population Structure Changes of China Affect Carbon Emissions? An Empirical Study Based on Ridge Regression Analysis," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    64. Ramachandra, T.V. & Bajpai, Vishnu & Kulkarni, Gouri & Aithal, Bharath H. & Han, Sun Sheng, 2017. "Economic disparity and CO2 emissions: The domestic energy sector in Greater Bangalore, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1331-1344.
    65. Maliyamu Abudureheman & Qingzhe Jiang & Xiucheng Dong & Cong Dong, 2022. "CO 2 Emissions in China: Does the Energy Rebound Matter?," Energies, MDPI, vol. 15(12), pages 1-25, June.
    66. Ghazala Aziz & Rida Waheed & Suleman Sarwar & Mohd Saeed Khan, 2022. "The Significance of Governance Indicators to Achieve Carbon Neutrality: A New Insight of Life Expectancy," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    67. Carmelo J. Le�n & Jorge E. Arana & Anastasia Hern�ndez Alem�n, 2014. "CO 2 Emissions and tourism in developed and less developed countries," Applied Economics Letters, Taylor & Francis Journals, vol. 21(16), pages 1169-1173, November.
    68. Rafiq, Shuddhasattwa & Salim, Ruhul & Apergis, Nicholas, 2016. "Agriculture, trade openness and emissions: an empirical analysis and policy options," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 60(2), April.
    69. Lapatinas, Athanasios & Garas, Antonios & Boleti, Eirini & Kyriakou, Alexandra, 2019. "Economic complexity and environmental performance: Evidence from a world sample," MPRA Paper 92833, University Library of Munich, Germany.
    70. Wang, En-Ze & Yang, Mian, 2022. "Green complexity and CO2 emission: Does institutional quality matter?," Energy Economics, Elsevier, vol. 110(C).
    71. Liddle, Brantley & Sadorsky, Perry, 2017. "How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions?," Applied Energy, Elsevier, vol. 197(C), pages 212-221.
    72. Xin Zhang & Chenhui Ding & Chao Liu & Xianzhong Teng & Ruoman Lv & Yiming Cai, 2023. "The Bilateral Effects of Population Aging on Regional Carbon Emissions in China: Promotion or Inhibition Effect?," Sustainability, MDPI, vol. 15(23), pages 1-17, November.
    73. Zhu, Hui-Ming & You, Wan-Hai & Zeng, Zhao-fa, 2012. "Urbanization and CO2 emissions: A semi-parametric panel data analysis," Economics Letters, Elsevier, vol. 117(3), pages 848-850.
    74. Junling Liu & Mingjian Yin & Ke Wang & Ji Zou & Ying Kong, 2020. "Long-term impacts of urbanization through population migration on China’s energy demand and CO2 emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1053-1071, August.
    75. Benhong Peng & Yuanyuan Wang & Ehsan Elahi & Guo Wei, 2018. "Evaluation and Prediction of the Ecological Footprint and Ecological Carrying Capacity for Yangtze River Urban Agglomeration Based on the Grey Model," IJERPH, MDPI, vol. 15(11), pages 1-14, November.
    76. Bingquan Liu & Boyang Nie & Yakun Wang & Xuemin Han & Yongqing Li, 2023. "Does New Infrastructure Affect Regional Carbon Intensity? Empirical Evidence from China," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    77. Chi-Hui Wang & Prasad Padmanabhan & Chia-Hsing Huang, 2021. "The Impact of Renewable Energy, Urbanization, and Environmental Sustainability Ratings on the Environmental Kuznets Curve and the Pollution Haven Hypothesis," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    78. Lars Sorge & Anne Neumann, 2019. "The Impact of Population, Affluence, Technology, and Urbanization on CO2 Emissions across Income Groups," Discussion Papers of DIW Berlin 1812, DIW Berlin, German Institute for Economic Research.
    79. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    80. Shoufu Lin & Ji Sun & Dora Marinova & Dingtao Zhao, 2017. "Effects of Population and Land Urbanization on China’s Environmental Impact: Empirical Analysis Based on the Extended STIRPAT Model," Sustainability, MDPI, vol. 9(5), pages 1-21, May.
    81. Feipeng Guo & Linji Zhang & Zifan Wang & Shaobo Ji, 2022. "Research on Determining the Critical Influencing Factors of Carbon Emission Integrating GRA with an Improved STIRPAT Model: Taking the Yangtze River Delta as an Example," IJERPH, MDPI, vol. 19(14), pages 1-20, July.
    82. Lin, Boqiang & Du, Zhili, 2015. "How China׳s urbanization impacts transport energy consumption in the face of income disparity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1693-1701.
    83. Cui, Can & Shan, Yuli & Liu, Jianghua & Yu, Xiang & Wang, Hongtao & Wang, Zhen, 2019. "CO2 emissions and their spatial patterns of Xinjiang cities in China," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    84. Liddle, Brantley & Lung, Sidney, 2013. "Might electricity consumption cause urbanization instead? Evidence from heterogeneous panel long-run causality tests," MPRA Paper 52333, University Library of Munich, Germany.
    85. Senzele, Joseph, 2022. "Croissance économique et dégradation de l’environnement en Côte d’Ivoire : application du modèle stirpat [Economic growth and environmental degradation in Cote d'ivoire : stirpat model implementati," MPRA Paper 114754, University Library of Munich, Germany, revised 24 Sep 2022.
    86. Ota, Toru & Kakinaka, Makoto & Kotani, Koji, 2018. "Demographic effects on residential electricity and city gas consumption in the aging society of Japan," Energy Policy, Elsevier, vol. 115(C), pages 503-513.
    87. Ying CHEN & Liyong LIU & Ying ZHANG, 2015. "China’s Urbanization and Carbon Emissions Peak," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-17, September.
    88. Lingfu Kong & Emrah Sofuoğlu & Balogun Daud Ishola & Shujaat Abbas & Qingran Guo & Khurshid Khudoykulov, 2024. "Sustainable development through structural transformation: a pathway to economic, social, and environmental progress," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-34, April.
    89. Xiaosan, Zhang & Qingquan, Jiang & Shoukat Iqbal, Khattak & Manzoor, Ahmad & Zia Ur, Rahman, 2021. "Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China," Energy Policy, Elsevier, vol. 155(C).
    90. Thai-Ha Le, 2021. "Drivers of greenhouse gas emissions in ASEAN + 6 countries: a new look," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18096-18115, December.
    91. Brantley Liddle, 2013. "The Energy, Economic Growth, Urbanization Nexus Across Development: Evidence from Heterogeneous Panel Estimates Robust to Cross-Sectional Dependence," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    92. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    93. Georgina Mace & Emma Terama & Tim Coulson, 2013. "Perspectives on International Trends and Dynamics in Population and Consumption," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(4), pages 555-568, August.
    94. Hyungwoo Lim & Jaehyeok Kim & Ha-Hyun Jo, 2020. "Population Age Structure and Greenhouse Gas Emissions from Road Transportation: A Panel Cointegration Analysis of 21 OECD Countries," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    95. Yongxia Ding & Wei Qu & Shuwen Niu & Man Liang & Wenli Qiang & Zhenguo Hong, 2016. "Factors Influencing the Spatial Difference in Household Energy Consumption in China," Sustainability, MDPI, vol. 8(12), pages 1-20, December.
    96. Liu, Qingrui & Tang, Lu, 2022. "Research on the accelerating effect of green finance on the transformation of energy consumption in China," Research in International Business and Finance, Elsevier, vol. 63(C).
    97. Shahriyar Mukhtarov & Jeyhun I. Mikayilov & V qar smay lov, 2017. "The Relationship between Energy Consumption and Economic Growth: Evidence from Azerbaijan," International Journal of Energy Economics and Policy, Econjournals, vol. 7(6), pages 32-38.
    98. Xingyuan Xiao & Minyue Hu & Minghong Tan & Xiubin Li & Wei Li, 2018. "Changes in the Ecological Footprint of Rural Populations in the Taihang Mountains, China," Sustainability, MDPI, vol. 10(10), pages 1-13, October.
    99. Rahman, Mohammad Mafizur & Vu, Xuan-Binh, 2020. "The nexus between renewable energy, economic growth, trade, urbanisation and environmental quality: A comparative study for Australia and Canada," Renewable Energy, Elsevier, vol. 155(C), pages 617-627.
    100. Du, W.C. & Xia, X.H., 2018. "How does urbanization affect GHG emissions? A cross-country panel threshold data analysis," Applied Energy, Elsevier, vol. 229(C), pages 872-883.
    101. Steven Lugauer & Richard Jensen & Clayton Sadler, 2014. "An Estimate Of The Age Distribution'S Effect On Carbon Dioxide Emissions," Economic Inquiry, Western Economic Association International, vol. 52(2), pages 914-929, April.
    102. Sarah Harper, 2013. "Population–Environment Interactions: European Migration, Population Composition and Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(4), pages 525-541, August.
    103. Olaronke T. ONANUGA, 2017. "Elasticity of CO2 emissions with Respect to Income, Population, and Energy Use: Time Series Evidence from African Countries," Economic Alternatives, University of National and World Economy, Sofia, Bulgaria, issue 4, pages 651-670, December.
    104. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    105. Dong, Qichen & Lin, Yongyi & Huang, Jieyu & Chen, Zhongfei, 2020. "Has urbanization accelerated PM2.5 emissions? An empirical analysis with cross-country data," China Economic Review, Elsevier, vol. 59(C).
    106. Daniel Balsalobre‐Lorente & Oana M. Driha & George Halkos & Shekhar Mishra, 2022. "Influence of growth and urbanization on CO2 emissions: The moderating effect of foreign direct investment on energy use in BRICS," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 227-240, February.
    107. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    108. Zheng, Wei & Walsh, Patrick Paul, 2019. "Economic growth, urbanization and energy consumption — A provincial level analysis of China," Energy Economics, Elsevier, vol. 80(C), pages 153-162.
    109. Wu, Rong & Wang, Jieyu & Wang, Shaojian & Feng, Kuishuang, 2021. "The drivers of declining CO2 emissions trends in developed nations using an extended STIRPAT model: A historical and prospective analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    110. Kais, Saidi & Sami, Hammami, 2016. "An econometric study of the impact of economic growth and energy use on carbon emissions: Panel data evidence from fifty eight countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1101-1110.
    111. Wei Zheng & Patrick Paul Walsh, 2018. "Economic growth, urbanization and energy consumption," Working Papers 201817, Geary Institute, University College Dublin.
    112. Mohammed Musah & Yusheng Kong & Isaac Adjei Mensah & Stephen Kwadwo Antwi & Mary Donkor, 2021. "The connection between urbanization and carbon emissions: a panel evidence from West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11525-11552, August.
    113. Wang, Zhaohua & Huang, Wanjing & Chen, Zhongfei, 2019. "The peak of CO2 emissions in China: A new approach using survival models," Energy Economics, Elsevier, vol. 81(C), pages 1099-1108.
    114. Mingyuan Guo & Shaoli Chen & Yu Zhang, 2022. "Spatial Analysis on the Role of Multi-Dimensional Urbanizations in Carbon Emissions: Evidence from China," IJERPH, MDPI, vol. 19(9), pages 1-23, April.
    115. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    116. Bo Li & Xuejing Liu & Zhenhong Li, 2015. "Using the STIRPAT model to explore the factors driving regional CO 2 emissions: a case of Tianjin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1667-1685, April.
    117. Jincai Zhao & Qianqian Liu, 2021. "Examining the Driving Factors of Urban Residential Carbon Intensity Using the LMDI Method: Evidence from China’s County-Level Cities," IJERPH, MDPI, vol. 18(8), pages 1-18, April.
    118. Phetkeo Poumanyvong & Shinji Kaneko & Shobhakar Dhakal, 2012. "Impacts of urbanization on national residential energy use and CO2 emissions: Evidence from low-, middle- and high-income countries," IDEC DP2 Series 2-5, Hiroshima University, Graduate School for International Development and Cooperation (IDEC).
    119. Sheng, Pengfei & Guo, Xiaohui, 2016. "The Long-run and Short-run Impacts of Urbanization on Carbon Dioxide Emissions," Economic Modelling, Elsevier, vol. 53(C), pages 208-215.
    120. Fariba Osmani & Masuod Homayounifar & Mohammad Javad Gorjipour, 2022. "Do export quality, urbanization and fertility rate affect the ecological footprint? Case study: A panel of developing countries," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2022(1), pages 51-67.
    121. Mu Li & Li Li & Wadim Strielkowski, 2019. "The Impact of Urbanization and Industrialization on Energy Security: A Case Study of China," Energies, MDPI, vol. 12(11), pages 1-22, June.
    122. Weidong Li & Xin Qi & Xiaojun Zhao, 2018. "Impact of Population Aging on Carbon Emission in China: A Panel Data Analysis," Sustainability, MDPI, vol. 10(7), pages 1-13, July.
    123. Xiaomei Shen & Hong Zheng & Mingdong Jiang & Xinxin Yu & Heyichen Xu & Guanyu Zhong, 2022. "Multidimensional Impact of Urbanization Process on Regional Net CO 2 Emissions: Taking the Yangtze River Economic Belt as an Example," Land, MDPI, vol. 11(7), pages 1-16, July.
    124. Thomas W. Crawford, 2020. "Urban Form as a Technological Driver of Carbon Dioxide Emission: A Structural Human Ecology Analysis of Onroad and Residential Sectors in the Conterminous U.S," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    125. Menz, Tobias & Welsch, Heinz, 2012. "Population aging and carbon emissions in OECD countries: Accounting for life-cycle and cohort effects," Energy Economics, Elsevier, vol. 34(3), pages 842-849.
    126. Liddle, Brantley, 2015. "What Are the Carbon Emissions Elasticities for Income and Population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates," MPRA Paper 61304, University Library of Munich, Germany.
    127. Andrew Jorgenson & Daniel Auerbach & Brett Clark, 2014. "The (De-) carbonization of urbanization, 1960–2010," Climatic Change, Springer, vol. 127(3), pages 561-575, December.
    128. Hasanov, Fakhri J. & Bulut, Cihan & Suleymanov, Elchin, 2016. "Do population age groups matter in the energy use of the oil-exporting countries?," Economic Modelling, Elsevier, vol. 54(C), pages 82-99.
    129. Sadorsky, Perry, 2014. "The effect of urbanization on CO2 emissions in emerging economies," Energy Economics, Elsevier, vol. 41(C), pages 147-153.
    130. Wang, Jing & Wan, Guanghua & Wang, Chen, 2019. "Participation in GVCs and CO2 emissions," Energy Economics, Elsevier, vol. 84(C).
    131. Adams, Samuel & Klobodu, Edem Kwame Mensah, 2017. "Urbanization, democracy, bureaucratic quality, and environmental degradation," Journal of Policy Modeling, Elsevier, vol. 39(6), pages 1035-1051.
    132. Vanesa Zorrilla-Muñoz & Marc Petz & María Silveria Agulló-Tomás, 2021. "GARCH model to estimate the impact of agricultural greenhouse gas emissions per sociodemographic factors and CAP in Spain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4675-4697, March.
    133. Zhibo Zhao & Tian Yuan & Xunpeng Shi & Lingdi Zhao, 2020. "Heterogeneity in the relationship between carbon emission performance and urbanization: evidence from China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1363-1380, October.
    134. Mansi Wang & Noman Arshed & Mubbasher Munir & Samma Faiz Rasool & Weiwen Lin, 2021. "Investigation of the STIRPAT model of environmental quality: a case of nonlinear quantile panel data analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12217-12232, August.
    135. Tabakaev, Roman & Ibraeva, Kanipa & Kan, Victor & Dubinin, Yury & Rudmin, Maksim & Yazykov, Nikolay & Zavorin, Alexander, 2020. "The effect of co-combustion of waste from flour milling and highly mineralized peat on sintering of the ash residue," Energy, Elsevier, vol. 196(C).
    136. Rafael Morales-Lage & Aurelia Bengochea-Morancho & Inmaculada Martínez-Zarzoso, 2016. "The determinants of CO2 emissions: evidence from European countries," Working Papers 2016/04, Economics Department, Universitat Jaume I, Castellón (Spain).
    137. Zhili Chen & Jinzhuo Wu, 2022. "Evolution of Logistics Industry Carbon Emissions in Heilongjiang Province, China," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    138. Mahendra Kumar Singh & Deep Mukherjee, 2019. "Drivers of greenhouse gas emissions in the United States: revisiting STIRPAT model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(6), pages 3015-3031, December.
    139. Li, Xuehui & Lin, Boqiang, 2013. "Global convergence in per capita CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 357-363.
    140. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    141. Effiong, Ekpeno, 2016. "Urbanization and Environmental Quality in Africa," MPRA Paper 73224, University Library of Munich, Germany.
    142. Destek, Mehmet Akif & Sinha, Avik & Özsoy, Ferda Nakıpoglu & Zafar, Muhammad Wasif, 2023. "Capital Flow and Environmental Quality at Crossroads: Designing a Sustainable Policy Framework for the Newly Industrialized Countries," MPRA Paper 117560, University Library of Munich, Germany.
    143. Zahra Nasrollahi & Mohadeseh-sadat Hashemi & Saeed Bameri & Vahid Mohamad Taghvaee, 2020. "Environmental pollution, economic growth, population, industrialization, and technology in weak and strong sustainability: using STIRPAT model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1105-1122, February.
    144. Hye-Kyoung Lee & Young-Hoon Bae & Jong-Yeong Son & Won-Hwa Hong, 2020. "Analysis of Flood-Vulnerable Areas for Disaster Planning Considering Demographic Changes in South Korea," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
    145. Johan-Andrés Vélez-Henao, 2020. "Does urbanization boost environmental impacts in Colombia? An extended STIRPAT–LCA approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(3), pages 851-866, June.
    146. Chen, Zhongfei & Huang, Wanjing & Zheng, Xian, 2019. "The decline in energy intensity: Does financial development matter?," Energy Policy, Elsevier, vol. 134(C).

  15. Liddle, Brantley, 2009. "Long-Run Relationship among Transport Demand, Income, and Gasoline Price for the US," MPRA Paper 52080, University Library of Munich, Germany.

    Cited by:

    1. Elżbieta Szaruga & Elżbieta Załoga, 2022. "Environmental Management from the Point of View of the Energy Intensity of Road Freight Transport and Shocks," IJERPH, MDPI, vol. 19(21), pages 1-22, November.
    2. Samir Saidi, 2021. "Freight transport and energy consumption: What impact on carbon dioxide emissions and environmental quality in MENA countries?," Economic Change and Restructuring, Springer, vol. 54(4), pages 1119-1145, November.
    3. Sheng, Mingyue & Sharp, Basil, 2019. "Aggregate road passenger travel demand in New Zealand: A seemingly unrelated regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 55-68.
    4. Saidi, Samir & Shahbaz, Muhammad & Akhtar, Pervaiz, 2018. "The long-run relationships between transport energy consumption, transport infrastructure, and economic growth in MENA countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 78-95.
    5. Nasreen, Samia & Mbarek, Mounir Ben & Atiq-ur-Rehman, Muhammad, 2020. "Long-run causal relationship between economic growth, transport energy consumption and environmental quality in Asian countries: Evidence from heterogeneous panel methods," Energy, Elsevier, vol. 192(C).
    6. Rentziou, Aikaterini & Gkritza, Konstantina & Souleyrette, Reginald R., 2012. "VMT, energy consumption, and GHG emissions forecasting for passenger transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 487-500.
    7. Ben Jebli, Mehdi & Belloumi, Mounir, 2017. "Investigation of the causal relationships between combustible renewables and waste consumption and CO2 emissions in the case of Tunisian maritime and rail transport," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 820-829.
    8. Guangyong Zhang & Lixin Tian & Wenbin Zhang & Xu Yan & Bingyue Wan & Zaili Zhen, 2020. "A Study on the Similarities and Differences of the Conventional Gasoline Spot Price Fluctuation Network between Different Harbors," Sustainability, MDPI, vol. 12(2), pages 1-25, January.
    9. Ben Jebli, Mehdi, 2015. "The Impact of Combustible Renewables and Waste Consumption and Transport on the Environmental Degradation: The Case of Tunisia," MPRA Paper 68038, University Library of Munich, Germany.
    10. Kakali Kanjilal & Sajal Ghosh, 2018. "Revisiting income and price elasticity of gasoline demand in India: new evidence from cointegration tests," Empirical Economics, Springer, vol. 55(4), pages 1869-1888, December.
    11. Samir, Saidi & Shahbaz, Muhammad & Akhtar, Pervaiz, 2018. "The Long-Run Relationship between Transport Energy Consumption and Transport Infrastructure on Economic Growth in MENA Countries," MPRA Paper 85037, University Library of Munich, Germany, revised 06 Mar 2018.
    12. Zolnik, Edmund J., 2018. "Effects of additional capacity on vehicle kilometers of travel in the U.S.: Evidence from National Household Travel Surveys," Journal of Transport Geography, Elsevier, vol. 66(C), pages 1-9.
    13. Humpe, Andreas & Gössling, Stefan & Haustein, Sonja, 2022. "Car careers: A socio-psychological evaluation of aspirational automobile ownership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 156-166.
    14. Liddle, Brantley & Lung, Sidney, 2015. "The endogeneity of OECD gasoline taxes: Evidence from pair-wise, heterogeneous panel long-run causality tests," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 31-38.
    15. Yang Song & Kevin R. Gurney, 2020. "The Relationship between On-Road FFCO 2 Emissions and Socio-Economic/Urban Form Factors for Global Cities: Significance, Robustness and Implications," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    16. Liddle, Brantley, 2012. "The Systemic, Long-run Relation among Gasoline Demand, Gasoline Price, Income, and Vehicle Ownership in OECD Countries: Evidence from Panel Cointegration and Causality Modeling," MPRA Paper 52081, University Library of Munich, Germany.
    17. Liddle, Brantley & Lung, Sidney, 2015. "Revisiting energy consumption and GDP causality: Importance of a priori hypothesis testing, disaggregated data, and heterogeneous panels," Applied Energy, Elsevier, vol. 142(C), pages 44-55.
    18. Achour, Houda & Belloumi, Mounir, 2016. "Investigating the causal relationship between transport infrastructure, transport energy consumption and economic growth in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 988-998.
    19. Melo, Patricia C. & Ramli, Ahmad Razi, 2014. "Estimating fuel demand elasticities to evaluate CO2 emissions: Panel data evidence for the Lisbon Metropolitan Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 30-46.
    20. Kyoung-Min Lim & Myunghwan Kim & Chang Seob Kim & Seung-Hoon Yoo, 2012. "Short-Run and Long-Run Elasticities of Diesel Demand in Korea," Energies, MDPI, vol. 5(12), pages 1-10, November.
    21. Dalia M. Ibrahiem, 2018. "Road energy consumption, economic growth, population and urbanization in Egypt: cointegration and causality analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1053-1066, June.

  16. Liddle, Brantley, 2006. "How Linked are Energy and GDP: Reconsidering Energy-GDP Cointegration and Causality for Disaggregated OECD Country Data," MPRA Paper 52334, University Library of Munich, Germany.

    Cited by:

    1. Liddle, Brantley, 2009. "Long-Run Relationship among Transport Demand, Income, and Gasoline Price for the US," MPRA Paper 52080, University Library of Munich, Germany.
    2. Brantley Liddle, 2013. "The Energy, Economic Growth, Urbanization Nexus Across Development: Evidence from Heterogeneous Panel Estimates Robust to Cross-Sectional Dependence," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    3. Brant Liddle, 2007. "Long-Run Relation among Motor Fuel Use, Vehicle Miles Traveled, Income, and Gas Price for the US," Energy and Environmental Modeling 2007 24000032, EcoMod.
    4. Liddle, Brantley & Lung, Sidney, 2015. "Revisiting energy consumption and GDP causality: Importance of a priori hypothesis testing, disaggregated data, and heterogeneous panels," Applied Energy, Elsevier, vol. 142(C), pages 44-55.

  17. Brantley Liddle, 2003. "Demographic dynamics and per capita environmental impact: using panel regressions and household decompositions to examine population and transport," MPIDR Working Papers WP-2003-029, Max Planck Institute for Demographic Research, Rostock, Germany.

    Cited by:

    1. Liddle, Brantley, 2013. "Urban density and climate change: a STIRPAT analysis using city-level data," Journal of Transport Geography, Elsevier, vol. 28(C), pages 22-29.
    2. Liddle, Brantley, 2013. "Population, Affluence, and Environmental Impact Across Development: Evidence from Panel Cointegration Modeling," MPRA Paper 52088, University Library of Munich, Germany.
    3. Laureti, Tiziana & Montero, José-María & Fernández-Avilés, Gema, 2014. "A local scale analysis on influencing factors of NOx emissions: Evidence from the Community of Madrid, Spain," Energy Policy, Elsevier, vol. 74(C), pages 557-568.
    4. Fang, Wen Shwo & Miller, Stephen M. & Yeh, Chih-Chuan, 2012. "The effect of ESCOs on energy use," Energy Policy, Elsevier, vol. 51(C), pages 558-568.
    5. Zhimin Zhou & Xinyue Ye & Xiangyu Ge, 2017. "The Impacts of Technical Progress on Sulfur Dioxide Kuznets Curve in China: A Spatial Panel Data Approach," Sustainability, MDPI, vol. 9(4), pages 1-27, April.
    6. Liddle, Brantley, 2013. "Urban Transport Pollution: Revisiting the Environmental Kuznets Curve," MPRA Paper 53632, University Library of Munich, Germany.
    7. Poumanyvong, Phetkeo & Kaneko, Shinji & Dhakal, Shobhakar, 2012. "Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries," Energy Policy, Elsevier, vol. 46(C), pages 268-277.
    8. Liddle, Brantley, 2009. "Long-Run Relationship among Transport Demand, Income, and Gasoline Price for the US," MPRA Paper 52080, University Library of Munich, Germany.
    9. Robert J R Elliott & Puyang Sun & Tong Zhu, 2014. "Urbanization and Energy Intensity: A Province-level Study for China," Discussion Papers 14-05, Department of Economics, University of Birmingham.
    10. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    11. Liddle, Brantley & Lung, Sidney, 2013. "Might electricity consumption cause urbanization instead? Evidence from heterogeneous panel long-run causality tests," MPRA Paper 52333, University Library of Munich, Germany.
    12. Liddle, Brantley & Lung, Sidney, 2010. "Age-Structure, Urbanization, and Climate Change in Developed Countries: Revisiting STIRPAT for Disaggregated Population and Consumption-Related Environmental Impacts," MPRA Paper 59579, University Library of Munich, Germany.
    13. Sadorsky, Perry, 2013. "Do urbanization and industrialization affect energy intensity in developing countries?," Energy Economics, Elsevier, vol. 37(C), pages 52-59.
    14. Georgina Mace & Emma Terama & Tim Coulson, 2013. "Perspectives on International Trends and Dynamics in Population and Consumption," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(4), pages 555-568, August.
    15. Elliott, Robert J.R. & Sun, Puyang & Zhu, Tong, 2017. "The direct and indirect effect of urbanization on energy intensity: A province-level study for China," Energy, Elsevier, vol. 123(C), pages 677-692.
    16. Xiangyu Ge & Zhimin Zhou & Yanli Zhou & Xinyue Ye & Songlin Liu, 2018. "A Spatial Panel Data Analysis of Economic Growth, Urbanization, and NO x Emissions in China," IJERPH, MDPI, vol. 15(4), pages 1-20, April.
    17. Menz, Tobias & Welsch, Heinz, 2012. "Population aging and carbon emissions in OECD countries: Accounting for life-cycle and cohort effects," Energy Economics, Elsevier, vol. 34(3), pages 842-849.

Articles

  1. Liddle, Brantley & Parker, Steven & Hasanov, Fakhri, 2023. "Why has the OECD long-run GDP elasticity of economy-wide electricity demand declined? Because the electrification of energy services has saturated," Energy Economics, Elsevier, vol. 125(C).

    Cited by:

    1. Liddle, Brantley, 2023. "Is timing everything? Assessing the evidence on whether energy/electricity demand elasticities are time-varying," Energy Economics, Elsevier, vol. 124(C).

  2. Zheng, Xinzhu & Wang, Ranran & Liddle, Brantley & Wen, Yuli & Lin, Lu & Wang, Lining, 2022. "Crude oil footprint in the rapidly changing world and implications from their income and price elasticities," Energy Policy, Elsevier, vol. 169(C).

    Cited by:

    1. Mishra, Brajesh & Ghosh, Sajal & Kanjilal, Kakali, 2023. "Policies to reduce India's crude oil import dependence amidst clean energy transition," Energy Policy, Elsevier, vol. 183(C).

  3. Brantley Liddle & Fakhri Hasanov, 2022. "Correction to: Industry electricity price and output elasticities for high-income and middle-income countries," Empirical Economics, Springer, vol. 62(3), pages 1321-1322, March.

    Cited by:

    1. Liddle, Brantley, 2023. "Is timing everything? Assessing the evidence on whether energy/electricity demand elasticities are time-varying," Energy Economics, Elsevier, vol. 124(C).
    2. Tran, Nhan Dang & Sahu, Naresh Chandra, 2023. "Asymmetric price response of industrial electricity demand in India," Utilities Policy, Elsevier, vol. 82(C).

  4. Liddle, Brantley & Parker, Steven, 2022. "One more for the road: Reconsidering whether OECD gasoline income and price elasticities have changed over time," Energy Economics, Elsevier, vol. 114(C).

    Cited by:

    1. Liddle, Brantley & Parker, Steven & Hasanov, Fakhri, 2023. "Why has the OECD long-run GDP elasticity of economy-wide electricity demand declined? Because the electrification of energy services has saturated," Energy Economics, Elsevier, vol. 125(C).
    2. Liddle, Brantley & Hasanov, Fakhri J. & Parker, Steven, 2022. "Your mileage may vary: Have road-fuel demand elasticities changed over time in middle-income countries?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 38-53.
    3. Liddle, Brantley, 2023. "Is timing everything? Assessing the evidence on whether energy/electricity demand elasticities are time-varying," Energy Economics, Elsevier, vol. 124(C).
    4. Mishra, Brajesh & Ghosh, Sajal & Kanjilal, Kakali, 2023. "Policies to reduce India's crude oil import dependence amidst clean energy transition," Energy Policy, Elsevier, vol. 183(C).

  5. Liddle, Brantley & Hasanov, Fakhri J. & Parker, Steven, 2022. "Your mileage may vary: Have road-fuel demand elasticities changed over time in middle-income countries?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 38-53.

    Cited by:

    1. Liddle, Brantley, 2023. "Is timing everything? Assessing the evidence on whether energy/electricity demand elasticities are time-varying," Energy Economics, Elsevier, vol. 124(C).

  6. Huntington, Hillard & Liddle, Brantley, 2022. "How energy prices shape OECD economic growth: Panel evidence from multiple decades," Energy Economics, Elsevier, vol. 111(C).
    See citations under working paper version above.
  7. Brantley Liddle & Fakhri Hasanov, 2022. "Industry electricity price and output elasticities for high-income and middle-income countries," Empirical Economics, Springer, vol. 62(3), pages 1293-1319, March.

    Cited by:

    1. Liddle, Brantley, 2023. "Is timing everything? Assessing the evidence on whether energy/electricity demand elasticities are time-varying," Energy Economics, Elsevier, vol. 124(C).
    2. Tran, Nhan Dang & Sahu, Naresh Chandra, 2023. "Asymmetric price response of industrial electricity demand in India," Utilities Policy, Elsevier, vol. 82(C).

  8. Brantley Liddle, 2022. "What Is the Temporal Path of the GDP Elasticity of Energy Consumption in OECD Countries? An Assessment of Previous Findings and New Evidence," Energies, MDPI, vol. 15(10), pages 1-12, May.

    Cited by:

    1. Liddle, Brantley & Parker, Steven & Hasanov, Fakhri, 2023. "Why has the OECD long-run GDP elasticity of economy-wide electricity demand declined? Because the electrification of energy services has saturated," Energy Economics, Elsevier, vol. 125(C).
    2. Liddle, Brantley, 2023. "Is timing everything? Assessing the evidence on whether energy/electricity demand elasticities are time-varying," Energy Economics, Elsevier, vol. 124(C).
    3. Yoosoon Chang & Yongok Choi & Chang Sik Kim & J. Isaac Miller & Joon Y. Park, 2024. "Common Trends and Country Specific Heterogeneities in Long-Run World Energy Consumption," CAMA Working Papers 2024-04, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    4. Maria Guadalupe Garcia-Garza & Jeyle Ortiz-Rodriguez & Esteban Picazzo-Palencia & Nora Munguia & Luis Velazquez, 2023. "The 2013 Mexican Energy Reform in the Context of Sustainable Development Goal 7," Energies, MDPI, vol. 16(19), pages 1-24, October.

  9. Liddle, Brantley & Huntington, Hillard, 2021. "There’s Technology Improvement, but is there Economy-wide Energy Leapfrogging? A Country Panel Analysis," World Development, Elsevier, vol. 140(C).

    Cited by:

    1. Rafael Alvarado & Cristian Ortiz & Lizeth Cuesta & Brayan Tillaguango, 2023. "Spillovers impact of institutional and economic factors in energy intensity," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1805-1823, June.
    2. Huntington, Hillard & Liddle, Brantley, 2022. "How energy prices shape OECD economic growth: Panel evidence from multiple decades," Energy Economics, Elsevier, vol. 111(C).
    3. Sovacool, Benjamin K. & Daniels, Chux & AbdulRafiu, Abbas, 2022. "Transitioning to electrified, automated and shared mobility in an African context: A comparative review of Johannesburg, Kigali, Lagos and Nairobi," Journal of Transport Geography, Elsevier, vol. 98(C).

  10. Liddle, Brantley & Huntington, Hillard, 2021. "How prices, income, and weather shape household electricity demand in high-income and middle-income countries," Energy Economics, Elsevier, vol. 95(C).

    Cited by:

    1. Liddle, Brantley & Parker, Steven & Hasanov, Fakhri, 2023. "Why has the OECD long-run GDP elasticity of economy-wide electricity demand declined? Because the electrification of energy services has saturated," Energy Economics, Elsevier, vol. 125(C).
    2. Zabaloy, Maria Florencia & Viego, Valentina, 2022. "Household electricity demand in Latin America and the Caribbean: A meta-analysis of price elasticity," Utilities Policy, Elsevier, vol. 75(C).
    3. Liddle, Brantley, 2023. "Is timing everything? Assessing the evidence on whether energy/electricity demand elasticities are time-varying," Energy Economics, Elsevier, vol. 124(C).
    4. Stanko Dimitrov & Régis Y. Chenavaz & Octavio Escobar, 2023. "Accounting for Climate When Determining the Impact of Weather on Retail Sales," Businesses, MDPI, vol. 3(3), pages 1-18, September.
    5. Favero, Filippo & Grossi, Luigi, 2023. "Analysis of individual natural gas consumption and price elasticity: Evidence from billing data in Italy," Energy Economics, Elsevier, vol. 118(C).
    6. Romero-Jordán, Desiderio & del Río, Pablo, 2022. "Analysing the drivers of the efficiency of households in electricity consumption," Energy Policy, Elsevier, vol. 164(C).

  11. Brantley Liddle, 2021. "The Effect of Environmental Stringency on End-Use Energy Prices - Evidence From High-Income Country Panels," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 1(1), pages 1-4.

    Cited by:

    1. Wanhai You & Yue Zhang & Chien-Chiang Lee, 2021. "Climate Risk, Economic Stability, and Tourism - A Cross-Sectionally Dependent Heterogeneous Panel Causality Analysis," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 2(2), pages 1-5.

  12. Liddle, Brantley & Smyth, Russell & Zhang, Xibin, 2020. "Time-varying income and price elasticities for energy demand: Evidence from a middle-income panel," Energy Economics, Elsevier, vol. 86(C).

    Cited by:

    1. Uddin, Md. Main & Mishra, Vinod & Smyth, Russell, 2020. "Income inequality and CO2 emissions in the G7, 1870–2014: Evidence from non-parametric modelling," Energy Economics, Elsevier, vol. 88(C).
    2. Sarkar, Biswajit & Seok, Hyesung & Jana, Tapas Kumar & Dey, Bikash Koli, 2023. "Is the system reliability profitable for retailing and consumer service of a dynamical system under cross-price elasticity of demand?," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    3. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris & Smyth, Russell, 2020. "The Environmental Kuznets Curve across Australian states and territories," Energy Economics, Elsevier, vol. 90(C).
    4. Gulasekaran Rajaguru & Safdar Ullah Khan, 2021. "Causality between Energy Consumption and Economic Growth in the Presence of Growth Volatility: Multi-Country Evidence," JRFM, MDPI, vol. 14(10), pages 1-26, October.
    5. Liddle, Brantley & Huntington, Hillard, 2020. "‘On the Road Again’: A 118 country panel analysis of gasoline and diesel demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 151-167.
    6. Lee, Chien-Chiang & Ho, Shan-Ju, 2022. "Impacts of export diversification on energy intensity, renewable energy, and waste energy in 121 countries: Do environmental regulations matter?," Renewable Energy, Elsevier, vol. 199(C), pages 1510-1522.
    7. Moghaddam, Mohsen Bakhshi & Lloyd-Ellis, Huw, 2022. "Heterogeneous effects of oil price fluctuations: Evidence from a nonparametric panel data model in Canada," Energy Economics, Elsevier, vol. 110(C).
    8. Gao, Jiti & Peng, Bin & Smyth, Russell, 2021. "On income and price elasticities for energy demand: A panel data study," Energy Economics, Elsevier, vol. 96(C).
    9. Yoosoon Chang & Yongok Choi & Chang Sik Kim & J. Isaac Miller & Joon Y. Park, 2024. "Common Trends and Country Specific Heterogeneities in Long-Run World Energy Consumption," CAMA Working Papers 2024-04, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Awaworyi Churchill, Sefa & Baako, Kingsley Tetteh & Mintah, Kwabena & Zhang, Quanda, 2021. "Transport infrastructure and house prices in the long run," Transport Policy, Elsevier, vol. 112(C), pages 1-12.
    11. Brantley Liddle, 2022. "What Is the Temporal Path of the GDP Elasticity of Energy Consumption in OECD Countries? An Assessment of Previous Findings and New Evidence," Energies, MDPI, vol. 15(10), pages 1-12, May.
    12. Eleyan, Mohammed I.Abu & Çatık, Abdurrahman Nazif & Balcılar, Mehmet & Ballı, Esra, 2021. "Are long-run income and price elasticities of oil demand time-varying? New evidence from BRICS countries," Energy, Elsevier, vol. 229(C).
    13. Liddle, Brantley & Huntington, Hillard, 2021. "There’s Technology Improvement, but is there Economy-wide Energy Leapfrogging? A Country Panel Analysis," World Development, Elsevier, vol. 140(C).
    14. Wang, Shubin & Sun, Shaolong & Zhao, Erlong & Wang, Shouyang, 2021. "Urban and rural differences with regional assessment of household energy consumption in China," Energy, Elsevier, vol. 232(C).
    15. Ivanovski, Kris & Hailemariam, Abebe, 2022. "Time-varying geopolitical risk and oil prices," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 206-221.
    16. Gorus, Muhammed Sehid & Karagol, Erdal Tanas, 2022. "Reactions of energy intensity, energy efficiency, and activity indexes to income and energy price changes: The panel data evidence from OECD countries," Energy, Elsevier, vol. 254(PA).
    17. Salim Hamza Ringim & Abdulkareem Alhassan & Hasan Güngör & Festus Victor Bekun, 2022. "Economic Policy Uncertainty and Energy Prices: Empirical Evidence from Multivariate DCC-GARCH Models," Energies, MDPI, vol. 15(10), pages 1-18, May.
    18. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris, 2021. "R&D expenditure and energy consumption in OECD nations," Energy Economics, Elsevier, vol. 100(C).
    19. Susana Silva & Isabel Soares & Oscar Afonso, 2021. "Assessing the double dividend of a third-generation environmental tax reform with resource substitution," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15145-15156, October.
    20. Eshagh Mansourkiaee & Hussein Moghaddam, 2022. "Econometric Analysis of Residential Sector Gas Demand Elasticities in Gas Exporting Countries," Energy and Environment Research, Canadian Center of Science and Education, vol. 11(2), pages 1-1, December.
    21. Bhattacharya, Mita & Inekwe, John & Yan, Eric, 2021. "Dynamics of energy poverty: Evidence from nonparametric estimates across the ASEAN+6 region," Energy Economics, Elsevier, vol. 103(C).
    22. Zihan Zhang & Enping Li & Guowei Zhang, 2023. "How Efficient China’s Tiered Pricing Is for Household Electricity: Evidence from Survey Data," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    23. Wang, Banban & Wei, Jie & Tan, Xiujie & Su, Bin, 2021. "The sectorally heterogeneous and time-varying price elasticities of energy demand in China," Energy Economics, Elsevier, vol. 102(C).
    24. Liddle, Brantley & Huntington, Hillard, 2021. "How prices, income, and weather shape household electricity demand in high-income and middle-income countries," Energy Economics, Elsevier, vol. 95(C).
    25. Vahid Mohamad Taghvaee & Abbas Assari Arani & Susanne Soretz & Lotfali Agheli, 2023. "Diesel demand elasticities and sustainable development pillars of economy, environment and social (health): comparing two strategies of subsidy removal and energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2285-2315, March.

  13. Brantley Liddle and Hillard Huntington, 2020. "Revisiting the Income Elasticity of Energy Consumption: A Heterogeneous, Common Factor, Dynamic OECD & non-OECD Country Panel Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 207-230.

    Cited by:

    1. Ravetti, Chiara & Cambini, Carlo, 2021. "Energy Use Beyond GDP: A Dynamic Panel Analysis with Different Development Indicators," Working Papers 10-2021, Copenhagen Business School, Department of Economics.
    2. Liddle, Brantley & Parker, Steven & Hasanov, Fakhri, 2023. "Why has the OECD long-run GDP elasticity of economy-wide electricity demand declined? Because the electrification of energy services has saturated," Energy Economics, Elsevier, vol. 125(C).
    3. Liddle, Brantley & Hasanov, Fakhri J. & Parker, Steven, 2022. "Your mileage may vary: Have road-fuel demand elasticities changed over time in middle-income countries?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 38-53.
    4. Liddle, Brantley, 2023. "Is timing everything? Assessing the evidence on whether energy/electricity demand elasticities are time-varying," Energy Economics, Elsevier, vol. 124(C).
    5. Liddle, Brantley & Huntington, Hillard, 2020. "‘On the Road Again’: A 118 country panel analysis of gasoline and diesel demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 151-167.
    6. Blagrave, Patrick & Furceri, Davide, 2021. "The macroeconomic effects of electricity-sector privatization," Energy Economics, Elsevier, vol. 100(C).
    7. Liddle, Brantley & Parker, Steven, 2022. "One more for the road: Reconsidering whether OECD gasoline income and price elasticities have changed over time," Energy Economics, Elsevier, vol. 114(C).
    8. Gao, Jiti & Peng, Bin & Smyth, Russell, 2021. "On income and price elasticities for energy demand: A panel data study," Energy Economics, Elsevier, vol. 96(C).
    9. Yoosoon Chang & Yongok Choi & Chang Sik Kim & J. Isaac Miller & Joon Y. Park, 2024. "Common Trends and Country Specific Heterogeneities in Long-Run World Energy Consumption," CAMA Working Papers 2024-04, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Brantley Liddle, 2022. "What Is the Temporal Path of the GDP Elasticity of Energy Consumption in OECD Countries? An Assessment of Previous Findings and New Evidence," Energies, MDPI, vol. 15(10), pages 1-12, May.
    11. Qing Wang & Kefeng Xiao & Zhou Lu, 2020. "Does Economic Policy Uncertainty Affect CO 2 Emissions? Empirical Evidence from the United States," Sustainability, MDPI, vol. 12(21), pages 1-11, November.
    12. Liddle, Brantley & Smyth, Russell & Zhang, Xibin, 2020. "Time-varying income and price elasticities for energy demand: Evidence from a middle-income panel," Energy Economics, Elsevier, vol. 86(C).
    13. Liddle, Brantley & Huntington, Hillard, 2021. "There’s Technology Improvement, but is there Economy-wide Energy Leapfrogging? A Country Panel Analysis," World Development, Elsevier, vol. 140(C).
    14. Xiaohui GONG & Bisharat Hussain CHANG & Xi CHEN & Kaiyang ZHONG, 2023. "Asymmetric Effects of Exchange Rates on Energy Demand in E7 Countries: New Evidence from Multiple Thresholds Nonlinear ARDL Model," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 125-142, June.
    15. Gorus, Muhammed Sehid & Karagol, Erdal Tanas, 2022. "Reactions of energy intensity, energy efficiency, and activity indexes to income and energy price changes: The panel data evidence from OECD countries," Energy, Elsevier, vol. 254(PA).
    16. Azhgaliyeva, Dina & Liu, Yang & Liddle, Brantley, 2020. "An empirical analysis of energy intensity and the role of policy instruments," Energy Policy, Elsevier, vol. 145(C).
    17. Rafael Alvarado & Cristian Ortiz & Lizeth Cuesta & Brayan Tillaguango, 2023. "Spillovers impact of institutional and economic factors in energy intensity," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1805-1823, June.
    18. Zheng, Xinzhu & Wang, Ranran & Liddle, Brantley & Wen, Yuli & Lin, Lu & Wang, Lining, 2022. "Crude oil footprint in the rapidly changing world and implications from their income and price elasticities," Energy Policy, Elsevier, vol. 169(C).
    19. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris, 2021. "R&D expenditure and energy consumption in OECD nations," Energy Economics, Elsevier, vol. 100(C).
    20. Huntington, Hillard & Liddle, Brantley, 2022. "How energy prices shape OECD economic growth: Panel evidence from multiple decades," Energy Economics, Elsevier, vol. 111(C).
    21. Liddle, Brantley & Sadorsky, Perry, 2020. "How much do asymmetric changes in income and energy prices affect energy demand?," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    22. Brantley Liddle & Fakhri Hasanov, 2022. "Industry electricity price and output elasticities for high-income and middle-income countries," Empirical Economics, Springer, vol. 62(3), pages 1293-1319, March.
    23. Lu, Zhou & Gozgor, Giray & Mahalik, Mantu Kumar & Padhan, Hemachandra & Yan, Cheng, 2022. "Welfare gains from international trade and renewable energy demand: Evidence from the OECD countries," Energy Economics, Elsevier, vol. 112(C).
    24. Liddle, Brantley & Huntington, Hillard, 2021. "How prices, income, and weather shape household electricity demand in high-income and middle-income countries," Energy Economics, Elsevier, vol. 95(C).

  14. Azhgaliyeva, Dina & Liu, Yang & Liddle, Brantley, 2020. "An empirical analysis of energy intensity and the role of policy instruments," Energy Policy, Elsevier, vol. 145(C).

    Cited by:

    1. Andra Blumberga & Reinis Āzis & Dāvis Reinbergs & Ieva Pakere & Dagnija Blumberga, 2021. "The Bright and Dark Sides of Energy Efficiency Obligation Scheme: The Case of Latvia," Energies, MDPI, vol. 14(15), pages 1-20, July.
    2. Mingxiong Bi & Chencheng Wang & Dian Fu & Xun Tan & Shurong Yu & Junbai Pan & Kun Lv, 2022. "Chinese-Style Fiscal Decentralization, Ecological Attention of Government, and Regional Energy Intensity," Energies, MDPI, vol. 15(22), pages 1-28, November.
    3. Wen, Huwei & Li, Nuoyan & Lee, Chien-Chiang, 2021. "Energy intensity of manufacturing enterprises under competitive pressure from the informal sector: Evidence from developing and emerging countries," Energy Economics, Elsevier, vol. 104(C).
    4. Agyeman, Stephen Duah & Lin, Boqiang, 2022. "Nonrenewable and renewable energy substitution, and low–carbon energy transition: Evidence from North African countries," Renewable Energy, Elsevier, vol. 194(C), pages 378-395.
    5. Madurai Elavarasan, Rajvikram & Nadarajah, Mithulananthan & Pugazhendhi, Rishi & Sinha, Avik & Gangatharan, Sivasankar & Chiaramonti, David & Abou Houran, Mohamad, 2023. "The untold subtlety of energy consumption and its influence on policy drive towards Sustainable Development Goal 7," Applied Energy, Elsevier, vol. 334(C).
    6. Nicolas Schneider & Avik Sinha, 2023. "Better clean or efficient? Panel regressions," Climatic Change, Springer, vol. 176(8), pages 1-24, August.
    7. Lee, Chien-Chiang & Ho, Shan-Ju, 2022. "Impacts of export diversification on energy intensity, renewable energy, and waste energy in 121 countries: Do environmental regulations matter?," Renewable Energy, Elsevier, vol. 199(C), pages 1510-1522.
    8. Magdalena Ziolo & Sandra Jednak & Gordana Savić & Dragana Kragulj, 2020. "Link between Energy Efficiency and Sustainable Economic and Financial Development in OECD Countries," Energies, MDPI, vol. 13(22), pages 1-28, November.
    9. Wang, Ying & Deng, Xiangzheng & Zhang, Hongwei & Liu, Yujie & Yue, Tianxiang & Liu, Gang, 2022. "Energy endowment, environmental regulation, and energy efficiency: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    10. Toshiyuki Sueyoshi & Mika Goto, 2023. "Energy Intensity, Energy Efficiency and Economic Growth among OECD Nations from 2000 to 2019," Energies, MDPI, vol. 16(4), pages 1-29, February.
    11. Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).
    12. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).
    13. Payne, James E. & Truong, Huong Hoang Diep & Chu, Lan Khanh & Doğan, Buhari & Ghosh, Sudeshna, 2023. "The effect of economic complexity and energy security on measures of energy efficiency: Evidence from panel quantile analysis," Energy Policy, Elsevier, vol. 177(C).
    14. Rafael Alvarado & Cristian Ortiz & Lizeth Cuesta & Brayan Tillaguango, 2023. "Spillovers impact of institutional and economic factors in energy intensity," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1805-1823, June.
    15. Dan He & Yahua Tang & Miaomiao Ren & Jie Yang, 2022. "How Does China Develop Green Service Industries? A Perspective on Policy Evolution," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    16. Schweiger, Helena & Stepanov, Alexander, 2022. "When good managers face bad incentives: Management quality and fuel intensity in the presence of price distortions," Energy Policy, Elsevier, vol. 164(C).
    17. Vítor João Pereira Domingues Martinho, 2021. "Impact of Covid‐19 on the convergence of GDP per capita in OECD countries," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(S1), pages 55-72, November.
    18. Rodríguez, M. & Teotónio, C. & Roebeling, P. & Fortes, P., 2023. "Targeting energy savings? Better on primary than final energy and less on intensity metrics," Energy Economics, Elsevier, vol. 125(C).
    19. Li, Yaya & Cobbinah, Joana & Abban, Olivier Joseph & Veglianti, Eleonora, 2023. "Does green manufacturing technology innovation decrease energy intensity for sustainable development?," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1010-1025.
    20. Hui, Wang & Xin-gang, Zhao & Ling-zhi, Ren & Ji-cheng, Fan & Fan, Lu, 2021. "The impact of technological progress on energy intensity in China (2005–2016): Evidence from a geographically and temporally weighted regression model," Energy, Elsevier, vol. 226(C).
    21. Hondeborg, Dianne & Probst, Benedict & Petkov, Ivalin & Knoeri, Christof, 2023. "The effectiveness of building retrofits under a subsidy scheme: Empirical evidence from Switzerland," Energy Policy, Elsevier, vol. 180(C).

  15. Dina Azhgaliyeva & Brantley Liddle, 2020. "Introduction to the special issue: Scaling Up Green Finance in Asia," Journal of Sustainable Finance & Investment, Taylor & Francis Journals, vol. 10(2), pages 83-91, April.

    Cited by:

    1. Jun Zhao & Jianda Wang & Kangyin Dong, 2023. "The role of green finance in eradicating energy poverty: ways to realize green economic recovery in the post-COVID-19 era," Economic Change and Restructuring, Springer, vol. 56(6), pages 3757-3785, December.
    2. Yang, Yuxue & Su, Xiang & Yao, Shuangliang, 2021. "Nexus between green finance, fintech, and high-quality economic development: Empirical evidence from China," Resources Policy, Elsevier, vol. 74(C).
    3. Goshu Desalegn & Anita Tangl, 2022. "Developing Countries in the Lead: A Bibliometric Approach to Green Finance," Energies, MDPI, vol. 15(12), pages 1-19, June.
    4. Davidescu, Adriana AnaMaria & Popovici, Oana Cristina & Strat, Vasile Alecsandru, 2022. "Estimating the impact of green ESIF in Romania using input-output model," International Review of Financial Analysis, Elsevier, vol. 84(C).
    5. Shangram Bahadur Shah & Jirakiattikul Sopin & Kua-Anan Techato & Bibek Kumar Mudbhari, 2023. "A Systematic Review on Nexus Between Green Finance and Climate Change: Evidence from China and India," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 599-613, July.
    6. Dong, Jiajia & Dou, Yue & Jiang, Qingzhe & Zhao, Jun, 2022. "Can financial inclusion facilitate carbon neutrality in China? The role of energy efficiency," Energy, Elsevier, vol. 251(C).
    7. Azhgaliyeva, Dina & Beirne, John & Mishra, Ranjeeta, 2021. "What Matters for Private Investment Financing in Renewable Energy Globally and in Asia?," ADBI Working Papers 1246, Asian Development Bank Institute.
    8. Sun, Lingyun & Yin, Jiemin & Bilal, Ahmad Raza, 2023. "Green financing and wind power energy generation: Empirical insights from China," Renewable Energy, Elsevier, vol. 206(C), pages 820-827.
    9. Jingyan Fu & Artie W. Ng, 2021. "Scaling up Renewable Energy Assets: Issuing Green Bond via Structured Public-Private Collaboration for Managing Risk in an Emerging Economy," Energies, MDPI, vol. 14(11), pages 1-16, May.
    10. Azhgaliyeva, Dina & Kapsalyamova, Zhanna, 2021. "Policy Support in Promoting Green Bonds in Asia," ADBI Working Papers 1275, Asian Development Bank Institute.

  16. Liddle, Brantley & Loi, Tian Sheng Allan & Owen, Anthony D. & Tao, Jacqueline, 2020. "Evaluating consumption and cost savings from new air-conditioner purchases: The case of Singapore," Energy Policy, Elsevier, vol. 145(C).

    Cited by:

    1. Zhu, Mengshu & Huang, Ying & Wang, Si-Nuo & Zheng, Xinye & Wei, Chu, 2023. "Characteristics and patterns of residential energy consumption for space cooling in China: Evidence from appliance-level data," Energy, Elsevier, vol. 265(C).
    2. Joan Manuel Felix Benitez & Luis Alfonso del Portillo-Valdés & Rene Pérez & David Sosa, 2022. "Methodology to Determine Energy Efficiency Strategies in Buildings Sited in Tropical Climatic Zones; Case Study, Buildings of the Tertiary Sector in the Dominican Republic," Energies, MDPI, vol. 15(13), pages 1-31, June.

  17. Liddle, Brantley & Huntington, Hillard, 2020. "‘On the Road Again’: A 118 country panel analysis of gasoline and diesel demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 151-167.

    Cited by:

    1. Kyungsoo Cha & Chul-Yong Lee, 2023. "Rockets and Feathers in the Gasoline Market: Evidence from South Korea," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    2. Li, Zheng & Zeng, Jingjing & Hensher, David A., 2023. "An efficient approach to structural breaks and the case of automobile gasoline consumption in Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    3. Liddle, Brantley & Hasanov, Fakhri J. & Parker, Steven, 2022. "Your mileage may vary: Have road-fuel demand elasticities changed over time in middle-income countries?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 38-53.
    4. Zheng, Xinzhu & Wang, Ranran & Liddle, Brantley & Wen, Yuli & Lin, Lu & Wang, Lining, 2022. "Crude oil footprint in the rapidly changing world and implications from their income and price elasticities," Energy Policy, Elsevier, vol. 169(C).

  18. Liddle, Brantley & Sadorsky, Perry, 2020. "How much do asymmetric changes in income and energy prices affect energy demand?," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).

    Cited by:

    1. Brown, Leanora & McFarlane, Adian & Campbell, Kaycea & Das, Anupam, 2020. "Remittances and CO2 emissions in Jamaica: An asymmetric modified environmental kuznets curve," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    2. Gulasekaran Rajaguru & Safdar Ullah Khan, 2021. "Causality between Energy Consumption and Economic Growth in the Presence of Growth Volatility: Multi-Country Evidence," JRFM, MDPI, vol. 14(10), pages 1-26, October.
    3. Liddle, Brantley & Huntington, Hillard, 2020. "‘On the Road Again’: A 118 country panel analysis of gasoline and diesel demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 151-167.
    4. Kamyabi, Najmeh & Chidmi, Benaissa, 2022. "Gasoline demand in the United States: An asymmetric economic analysis," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).
    5. Gert Peersman & Joris Wauters, 2022. "Heterogeneous household responses to energy price shocks," Working Paper Research 416, National Bank of Belgium.
    6. Zribi, Wissal & Boufateh, Talel, 2020. "Asymmetric CEO confidence and CSR: A nonlinear panel ARDL-PMG approach," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    7. Gritli, Mohamed Ilyes & Charfi, Fatma Marrakchi, 2023. "The determinants of oil consumption in Tunisia: Fresh evidence from NARDL approach and asymmetric causality test," Energy, Elsevier, vol. 284(C).
    8. Xiaohui GONG & Bisharat Hussain CHANG & Xi CHEN & Kaiyang ZHONG, 2023. "Asymmetric Effects of Exchange Rates on Energy Demand in E7 Countries: New Evidence from Multiple Thresholds Nonlinear ARDL Model," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 125-142, June.
    9. Nandelenga, Martin Wafula & Oduor, Jacob, 2020. "Asymmetric analysis of finance - Inequality nexus: Evidence from sub-Saharan Africa," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    10. Chung-Siong Tang & Mori Kogid & James Alin & Brian Dollery, 2022. "Modelling Sectoral Energy Consumption in Malaysia: Assessing the Asymmetric Effects," Sustainability, MDPI, vol. 14(3), pages 1-17, February.
    11. Tran, Nhan Dang & Sahu, Naresh Chandra, 2023. "Asymmetric price response of industrial electricity demand in India," Utilities Policy, Elsevier, vol. 82(C).

  19. Brantley Liddle, 2018. "Consumption-Based Accounting and the Trade-Carbon Emissions Nexus in Asia: A Heterogeneous, Common Factor Panel Analysis," Sustainability, MDPI, vol. 10(10), pages 1-13, October.

    Cited by:

    1. Ibrahim, Ridwan Lanre & Ajide, Kazeem Bello, 2021. "The dynamic heterogeneous impacts of nonrenewable energy, trade openness, total natural resource rents, financial development and regulatory quality on environmental quality: Evidence from BRICS econo," Resources Policy, Elsevier, vol. 74(C).
    2. Usman Mehmood & Ephraim Bonah Agyekum & Solomon Eghosa Uhunamure & Karabo Shale & Ayesha Mariam, 2022. "Evaluating the Influences of Natural Resources and Ageing People on CO 2 Emissions in G-11 Nations: Application of CS-ARDL Approach," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    3. Chen Wang & Khalid Eltayeb Elfaki & Xin Zhao & Yuping Shang & Zeeshan Khan, 2022. "International trade and consumption‐based carbon emissions: Does energy efficiency and financial risk ensure sustainable environment?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1451-1461, December.
    4. Jing Wang & Jie Li, 2021. "Exploring the Impact of International Trade on Carbon Emissions: New Evidence from China’s 282 Cities," Sustainability, MDPI, vol. 13(16), pages 1-12, August.
    5. Na Xin & Zhuoting Xie, 2023. "Financial inclusion and trade adjusted carbon emissions: Evaluating the role of environment related taxes employing non‐parametric panel methods," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 78-90, February.
    6. Li, Xuelin & Yang, Lin, 2023. "Natural resources, remittances and carbon emissions: A Dutch Disease perspective with remittances for South Asia," Resources Policy, Elsevier, vol. 85(PB).
    7. Liu, Huiling & Zhang, Jianhua & Lei, Heng, 2022. "Do imported environmental goods reduce pollution intensity? The end use matters," Energy Economics, Elsevier, vol. 112(C).
    8. Khan, Zeeshan & Ali, Muhsin & Jinyu, Liu & Shahbaz, Muhammad & Siqun, Yang, 2020. "Consumption-based carbon emissions and trade nexus: Evidence from nine oil exporting countries," Energy Economics, Elsevier, vol. 89(C).
    9. Awan, Ashar & Alnour, Mohammed & Jahanger, Atif & Onwe, Joshua Chukwuma, 2022. "Do technological innovation and urbanization mitigate carbon dioxide emissions from the transport sector?," Technology in Society, Elsevier, vol. 71(C).
    10. Wang, Kun & Rehman, Mubeen Abdur & Fahad, Shah & Linzhao, Zeng, 2023. "Unleashing the influence of natural resources, sustainable energy and human capital on consumption-based carbon emissions in G-7 Countries," Resources Policy, Elsevier, vol. 81(C).
    11. Nwani, Chinazaekpere & Adams, Samuel, 2021. "Environmental cost of natural resource rents based on production and consumption inventories of carbon emissions: Assessing the role of institutional quality," Resources Policy, Elsevier, vol. 74(C).
    12. Razzaq, Asif & Sharif, Arshian & Afshan, Sahar & Li, Claire J., 2023. "Do climate technologies and recycling asymmetrically mitigate consumption-based carbon emissions in the United States? New insights from Quantile ARDL," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    13. Gangopadhyay, Partha & Das, Narasingha & Alam, G.M. Monirul & Khan, Uzma & Haseeb, Mohammad & Hossain, Md. Emran, 2023. "Revisiting the carbon pollution-inhibiting policies in the USA using the quantile ARDL methodology: What roles can clean energy and globalization play?," Renewable Energy, Elsevier, vol. 204(C), pages 710-721.
    14. Igor Makarov, 2018. "Discrepancies Between Environmental Kuznets Curves For Production- And Consumption-Based Co2 Emissions," HSE Working papers WP BRP 199/EC/2018, National Research University Higher School of Economics.
    15. Rundong Luo & Sami Ullah & Kishwar Ali, 2021. "Pathway towards Sustainability in Selected Asian Countries: Influence of Green Investment, Technology Innovations, and Economic Growth on CO2 Emission," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    16. Qian Wang & Cuiyun Gao & Shuanping Dai, 2019. "Effect of the Emissions Trading Scheme on CO 2 Abatement in China," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    17. Zeeshan Khan & Ramez Abubakr Badeeb & Taimoor Hassan & Changyong Zhang & Khalid Eltayeb Elfaki, 2023. "Emissions‐Adjusted International Trade for Sustainable Development in China: Evidence from dynamic autoregressive distributed lags model and kernel based regression," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 379-392, February.
    18. Norazah Mohd Suki & Norbayah Mohd Suki & Arshian Sharif & Sahar Afshan, 2021. "The role of logistics performance for sustainable development in top Asian countries: Evidence from advance panel estimations," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 595-606, July.
    19. Fakhri J. Hasanov & Zeeshan Khan & Muzzammil Hussain & Muhammad Tufail, 2021. "Theoretical Framework for the Carbon Emissions Effects of Technological Progress and Renewable Energy Consumption," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(5), pages 810-822, September.
    20. Wang, Wei & Rehman, Mubeen Abdur & Fahad, Shah, 2022. "The dynamic influence of renewable energy, trade openness, and industrialization on the sustainable environment in G-7 economies," Renewable Energy, Elsevier, vol. 198(C), pages 484-491.
    21. Liu, Xuemei & Yuan, Shuhan & Yu, Haoran & Liu, Zheng, 2023. "How ecological policy stringency moderates the influence of industrial innovation on environmental sustainability: The role of renewable energy transition in BRICST countries," Renewable Energy, Elsevier, vol. 207(C), pages 194-204.
    22. Shahriyar Mukhtarov & Fuzuli Aliyev & Javid Aliyev & Richard Ajayi, 2022. "Renewable Energy Consumption and Carbon Emissions: Evidence from an Oil-Rich Economy," Sustainability, MDPI, vol. 15(1), pages 1-12, December.

  20. Hasanov, Fakhri J. & Liddle, Brantley & Mikayilov, Jeyhun I., 2018. "The impact of international trade on CO2 emissions in oil exporting countries: Territory vs consumption emissions accounting," Energy Economics, Elsevier, vol. 74(C), pages 343-350.

    Cited by:

    1. Chimere O. Iheonu & Ekene ThankGod Emeka & Simplice A. Asongu & Princewill U. Okwoche, 2022. "Foreign Investment, International Trade and Environmental Sustainability: Exploring Ecological Footprints in 37 African Countries," Working Papers of the African Governance and Development Institute. 22/068, African Governance and Development Institute..
    2. Jingwen Lu & Lihua Dai, 2023. "Examining the Threshold Effect of Environmental Regulation: The Impact of Agricultural Product Trade Openness on Agricultural Carbon Emissions," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    3. Chimere O. Iheonu & Ogochukwu C. Anyanwu & Obinna K. Odo & Solomon Prince Nathaniel, 2021. "Does Economic Growth, International Trade and Urbanization uphold Environmental Sustainability in sub-Saharan Africa? Insights from Quantile and Causality Procedures," Working Papers of the African Governance and Development Institute. 21/003, African Governance and Development Institute..
    4. Mohammad Mafizur Rahman & Khosrul Alam, 2022. "CO 2 Emissions in Asia–Pacific Region: Do Energy Use, Economic Growth, Financial Development, and International Trade Have Detrimental Effects?," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    5. Tao, Ran & Su, Chi-Wei & Naqvi, Bushra & Rizvi, Syed Kumail Abbas, 2022. "Can Fintech development pave the way for a transition towards low-carbon economy: A global perspective," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    6. Xixuan Guo & Kaixiang Huang & Lanyu Li & Xiaonan Wang, 2022. "Renewable Energy for Balancing Carbon Emissions and Reducing Carbon Transfer under Global Value Chains: A Way Forward," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    7. Jiao, Zhilun & Sharma, Rajesh & Kautish, Pradeep & Hussain, Hafezali Iqbal, 2021. "Unveiling the asymmetric impact of exports, oil prices, technological innovations, and income inequality on carbon emissions in India," Resources Policy, Elsevier, vol. 74(C).
    8. Ibrahim, Ridwan Lanre & Ajide, Kazeem Bello, 2021. "The dynamic heterogeneous impacts of nonrenewable energy, trade openness, total natural resource rents, financial development and regulatory quality on environmental quality: Evidence from BRICS econo," Resources Policy, Elsevier, vol. 74(C).
    9. Nuno Carlos Leitão, 2021. "Testing the Role of Trade on Carbon Dioxide Emissions in Portugal," Economies, MDPI, vol. 9(1), pages 1-15, February.
    10. Qiang Ma & Xue Han & Ramez Abubakr Badeeb & Zeeshan Khan, 2022. "On the sustainable trade development: Do Financial inclusion and eco‐innovation matter? Evidence from method of moments quantile regression," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 1044-1055, October.
    11. Huaping Sun & Samuel Attuquaye Clottey & Yong Geng & Kai Fang & Joshua Clifford Kofi Amissah, 2019. "Trade Openness and Carbon Emissions: Evidence from Belt and Road Countries," Sustainability, MDPI, vol. 11(9), pages 1-20, May.
    12. Mohammad Mafizur Rahman & Xuan-Binh (Benjamin) Vu, 2021. "Are Energy Consumption, Population Density and Exports Causing Environmental Damage in China? Autoregressive Distributed Lag and Vector Error Correction Model Approaches," Sustainability, MDPI, vol. 13(7), pages 1-19, March.
    13. Manzoor Ahmad & Shoukat Iqbal Khattak, 2020. "Is Aggregate Domestic Consumption Spending (ADCS) Per Capita Determining CO2 Emissions in South Africa? A New Perspective," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(3), pages 529-552, March.
    14. Dervis Kirikkaleli & Hasan Güngör & Tomiwa Sunday Adebayo, 2022. "Consumption‐based carbon emissions, renewable energy consumption, financial development and economic growth in Chile," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1123-1137, March.
    15. Mohammad Mafizur Rahman & Xuan-Binh (Benjamin) Vu & Son Nghiem, 2022. "Economic Growth in Six ASEAN Countries: Are Energy, Human Capital and Financial Development Playing Major Roles?," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    16. Ying Nie & Qingjie Liu & Rong Liu & Dexiao Ren & Yao Zhong & Feng Yu, 2022. "The Threshold Effect of FDI on CO 2 Emission in Belt and Road Countries," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    17. Xiuqin Zhang & Xudong Shi & Yasir Khan & Taimoor Hassan & Mohamed Marie, 2023. "Carbon Neutrality Challenge: Analyse the Role of Energy Productivity, Renewable Energy, and Collaboration in Climate Mitigation Technology in OECD Economies," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    18. Abbasi, Kashif Raza & Hussain, Khadim & Haddad, Akram Masoud & Salman, Asma & Ozturk, Ilhan, 2022. "The role of Financial Development and Technological Innovation towards Sustainable Development in Pakistan: Fresh insights from consumption and territory-based emissions," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    19. Chen, Jie & Huang, Shoujun & Ajaz, Tahseen, 2022. "Natural resources management and technological innovation under EKC framework: A glimmer of hope for sustainable environment in newly industrialized countries," Resources Policy, Elsevier, vol. 79(C).
    20. Waqas & Dilawar Khan & Róbert Magda, 2022. "The Impact of Forest Wood Product Exports on Environmental Performance in Asia," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    21. Zeeshan Khan & Muhsin Ali & Dervis Kirikkaleli & Salman Wahab & Zhilun Jiao, 2020. "The impact of technological innovation and public‐private partnership investment on sustainable environment in China: Consumption‐based carbon emissions analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1317-1330, September.
    22. YuSheng Kong & Rabnawaz Khan, 2019. "To examine environmental pollution by economic growth and their impact in an environmental Kuznets curve (EKC) among developed and developing countries," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-23, March.
    23. Gu, Xiao & Shen, Xi & Zhong, Xiangming & Wu, Tong & Rahim, Syed, 2023. "Natural resources and undesired productions of environmental outputs as green growth: EKC in the perspective of green finance and green growth in the G7 region," Resources Policy, Elsevier, vol. 82(C).
    24. Longe Adedayo Emmanuel & Omitogun Olawunmi & Adelokun Oluwole Oluniyi & Adebayo Emmanuel Olajide & Muhammad Shehu, 2020. "The Impact of Trade and Transport Services on the Environment in Africa," Economic Themes, Sciendo, vol. 58(3), pages 415-439, September.
    25. Chen Wang & Khalid Eltayeb Elfaki & Xin Zhao & Yuping Shang & Zeeshan Khan, 2022. "International trade and consumption‐based carbon emissions: Does energy efficiency and financial risk ensure sustainable environment?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1451-1461, December.
    26. Cong Khai Dinh & Quang Thanh Ngo & Trung Thanh Nguyen, 2021. "Medium- and High-Tech Export and Renewable Energy Consumption: Non-Linear Evidence from the ASEAN Countries," Energies, MDPI, vol. 14(15), pages 1-16, July.
    27. Özge Demiral & Mehmet Demiral & Emine Dilara Aktekin‐Gök, 2022. "Extra‐regional trade and consumption‐based carbon dioxide emissions in the European countries: Is there a carbon leakage?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1987-2001, December.
    28. Qadir, Saeed & Dosmagambet, Yergali, 2020. "CAREC energy corridor: Opportunities, challenges, and IMPACT of regional energy trade integration on carbon emissions and energy access," Energy Policy, Elsevier, vol. 147(C).
    29. Guo, Xiuping & Meng, Xianglei & Luan, Qingfeng & Wang, Yanhua, 2023. "Trade openness, globalization, and natural resources management: The moderating role of economic complexity in newly industrialized countries," Resources Policy, Elsevier, vol. 85(PA).
    30. Abdulrasheed Zakari & Vincent Tawiah, 2019. "Impact of Electricity Consumption, Financial Development, Trade Openness on CO2 Emissions: Evidence from Nigeria," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 4, pages 143-157.
    31. Na Xin & Zhuoting Xie, 2023. "Financial inclusion and trade adjusted carbon emissions: Evaluating the role of environment related taxes employing non‐parametric panel methods," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 78-90, February.
    32. Li, Xuelin & Yang, Lin, 2023. "Natural resources, remittances and carbon emissions: A Dutch Disease perspective with remittances for South Asia," Resources Policy, Elsevier, vol. 85(PB).
    33. Liu, Huiling & Zhang, Jianhua & Lei, Heng, 2022. "Do imported environmental goods reduce pollution intensity? The end use matters," Energy Economics, Elsevier, vol. 112(C).
    34. Sorroche-del-Rey, Yolanda & Piedra-Muñoz, Laura & Galdeano-Gómez, Emilio, 2023. "Interrelationship between international trade and environmental performance: Theoretical approaches and indicators for sustainable development," MPRA Paper 119918, University Library of Munich, Germany.
    35. Recep Ulucak & Danish & Yaoqi Zhang & Rui Chen & Yiting Qiu, 2024. "Income Inequality, Economic Complexity, and Renewable Energy Impacts in Controlling Consumption-Based Carbon Emissions," Evaluation Review, , vol. 48(1), pages 119-142, February.
    36. Frodyma, Katarzyna & Papież, Monika & Śmiech, Sławomir, 2022. "Revisiting the Environmental Kuznets Curve in the European Union countries," Energy, Elsevier, vol. 241(C).
    37. Cheng, Ya & Awan, Usama & Ahmad, Shabbir & Tan, Zhixiong, 2021. "How do technological innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    38. Chimere O. Iheonu & Ogochukwu C. Anyanwu & Obinna K. Odo & Solomon Prince Nathaniel, 2021. "Does Economic Growth, International Trade and Urbanization uphold Environmental Sustainability in sub-Saharan Africa? Insights from Quantile and Causality Procedures," Research Africa Network Working Papers 21/003, Research Africa Network (RAN).
    39. Jalles, Joao Tovar & Ge, Jun, 2020. "Emissions and economic development in commodity exporting countries," Energy Economics, Elsevier, vol. 85(C).
    40. Khan, Zeeshan & Ali, Muhsin & Jinyu, Liu & Shahbaz, Muhammad & Siqun, Yang, 2020. "Consumption-based carbon emissions and trade nexus: Evidence from nine oil exporting countries," Energy Economics, Elsevier, vol. 89(C).
    41. Hussain, Muzzammil & Ye, Zhiwei & Bashir, Adnan & Chaudhry, Naveed Iqbal & Zhao, Yingjun, 2021. "A nexus of natural resource rents, institutional quality, human capital, and financial development in resource-rich high-income economies," Resources Policy, Elsevier, vol. 74(C).
    42. Qiao, Hongqiang & Kang, Yongwei & Yan, Jixuan & Zhang, Jia & Zheng, Zhiqin & Liang, Qiaoxia, 2023. "What role does trade expansion play in the natural resource sustainability of highly resource-consuming countries? Testing Moderating Role of Exports and Innovation," Resources Policy, Elsevier, vol. 82(C).
    43. Wang, Kai-Hua & Umar, Muhammad & Akram, Rabia & Caglar, Ersin, 2021. "Is technological innovation making world "Greener"? An evidence from changing growth story of China," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    44. Wang, Kun & Rehman, Mubeen Abdur & Fahad, Shah & Linzhao, Zeng, 2023. "Unleashing the influence of natural resources, sustainable energy and human capital on consumption-based carbon emissions in G-7 Countries," Resources Policy, Elsevier, vol. 81(C).
    45. Huiling Liu & Jianhua Zhang & Hongyun Huang & Haitao Wu & Yu Hao, 2023. "Environmental good exports and green total factor productivity: Lessons from China," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1681-1703, June.
    46. Renato Santiago & Matheus Koengkan & José Alberto Fuinhas & António Cardoso Marques, 2020. "The relationship between public capital stock, private capital stock and economic growth in the Latin American and Caribbean countries," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 67(3), pages 293-317, September.
    47. Ziwei Zhang & Qiang Zheng, 2023. "Sustainable development via environmental taxes and efficiency in energy: Evaluating trade adjusted carbon emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 415-425, February.
    48. Emodi, Nnaemeka Vincent & Inekwe, John Nkwoma & Zakari, Abdulrasheed, 2022. "Transport infrastructure, CO2 emissions, mortality, and life expectancy in the Global South," Transport Policy, Elsevier, vol. 128(C), pages 243-253.
    49. Nwani, Chinazaekpere & Adams, Samuel, 2021. "Environmental cost of natural resource rents based on production and consumption inventories of carbon emissions: Assessing the role of institutional quality," Resources Policy, Elsevier, vol. 74(C).
    50. Doğan, Buhari & Shahbaz, Muhammad & Bashir, Muhammad Farhan & Abbas, Shujaat & Ghosh, Sudeshna, 2023. "Formulating energy security strategies for a sustainable environment: Evidence from the newly industrialized economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    51. Razzaq, Asif & Sharif, Arshian & Afshan, Sahar & Li, Claire J., 2023. "Do climate technologies and recycling asymmetrically mitigate consumption-based carbon emissions in the United States? New insights from Quantile ARDL," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    52. Zhu Weimin & Muhammad Zubair Chishti, 2021. "Toward Sustainable Development: Assessing the Effects of Commercial Policies on Consumption and Production-Based Carbon Emissions in Developing Economies," SAGE Open, , vol. 11(4), pages 21582440211, December.
    53. Usman Mehmood & Salman Tariq & Zia Ul-Haq & Ephraim Bonah Agyekum & Salah Kamel & Mohamed Elnaggar & Hasan Nawaz & Ammar Hameed & Shafqat Ali, 2022. "Can Financial Institutional Deepening and Renewable Energy Consumption Lower CO 2 Emissions in G-10 Countries: Fresh Evidence from Advanced Methodologies," IJERPH, MDPI, vol. 19(9), pages 1-18, May.
    54. Xiaosan, Zhang & Qingquan, Jiang & Shoukat Iqbal, Khattak & Manzoor, Ahmad & Zia Ur, Rahman, 2021. "Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China," Energy Policy, Elsevier, vol. 155(C).
    55. Fumei He & Ke-Chiun Chang & Min Li & Xueping Li & Fangjhy Li, 2020. "Bootstrap ARDL Test on the Relationship among Trade, FDI, and CO 2 Emissions: Based on the Experience of BRICS Countries," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    56. Ni, Xiewen & Wang, Zanxin & Akbar, Ahsan & Ali, Sher, 2022. "Natural resources volatility, renewable energy, R&D resources and environment: Evidence from selected developed countries," Resources Policy, Elsevier, vol. 77(C).
    57. Siddik, Abu Bakkar & Khan, Samiha & Khan, Uzma & Yong, Li & Murshed, Muntasir, 2023. "The role of renewable energy finance in achieving low-carbon growth: contextual evidence from leading renewable energy-investing countries," Energy, Elsevier, vol. 270(C).
    58. Bai, Jiancheng & Han, Zhiyong & Rizvi, Syed Kumail Abbas & Naqvi, Bushra, 2023. "Green trade or green technology? The way forward for G-7 economies to achieve COP 26 targets while making competing policy choices," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    59. Pham Ngoc-Tham & Pham Trung-Kien & Cao Viet Hieu & Tran Ha Giang & Vo Xuan Vinh, 2020. "The Impact of International Trade on Environmental Quality: Implications for Law," Asian Journal of Law and Economics, De Gruyter, vol. 11(1), pages 1-12, April.
    60. Ilhan Ozturk & Buket Savranlar & Alper Aslan & Usama Al-mulali & Seyfettin Artan, 2023. "The Dynamic Simulation Analysis of the Impact of Urbanization and Globalization on Environmental Quality," Sustainability, MDPI, vol. 15(15), pages 1-13, July.
    61. Rahman, Mohammad Mafizur & Vu, Xuan-Binh, 2020. "The nexus between renewable energy, economic growth, trade, urbanisation and environmental quality: A comparative study for Australia and Canada," Renewable Energy, Elsevier, vol. 155(C), pages 617-627.
    62. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2022. "Does the European Union energy policy support progress in decoupling economic growth from emissions?," Energy Policy, Elsevier, vol. 170(C).
    63. Jan Polcyn & Liton Chandra Voumik & Mohammad Ridwan & Samrat Ray & Viktoriia Vovk, 2023. "Evaluating the Influences of Health Expenditure, Energy Consumption, and Environmental Pollution on Life Expectancy in Asia," IJERPH, MDPI, vol. 20(5), pages 1-18, February.
    64. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Husam Rjoub & Mirela Panait & Catalin Popescu, 2021. "Asymmetric Impact of International Trade on Consumption-Based Carbon Emissions in MINT Nations," Energies, MDPI, vol. 14(20), pages 1-19, October.
    65. Razzaq, Asif & Wang, Yufeng & Chupradit, Supat & Suksatan, Wanich & Shahzad, Farrukh, 2021. "Asymmetric inter-linkages between green technology innovation and consumption-based carbon emissions in BRICS countries using quantile-on-quantile framework," Technology in Society, Elsevier, vol. 66(C).
    66. Ellen Thio & MeiXuen Tan & Liang Li & Muhammad Salman & Xingle Long & Huaping Sun & Bangzhu Zhu, 2022. "The estimation of influencing factors for carbon emissions based on EKC hypothesis and STIRPAT model: Evidence from top 10 countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11226-11259, September.
    67. Shahid Ali & Eyup Dogan & Fuzhong Chen & Zeeshan Khan, 2021. "International trade and environmental performance in top ten‐emitters countries: The role of eco‐innovation and renewable energy consumption," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 378-387, March.
    68. Rida Waheed, 2022. "The Significance of Energy Factors, Green Economic Indicators, Blue Economic Aspects towards Carbon Intensity: A Study of Saudi Vision 2030," Sustainability, MDPI, vol. 14(11), pages 1-22, June.
    69. Muhammad Awais Baloch & Danish, 2022. "The nexus between renewable energy, income inequality, and consumption‐based CO2 emissions: An empirical investigation," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 1268-1277, October.
    70. Le Hoang Phong & Dang Thi Bach Van & Ho Hoang Gia Bao, 2018. "The Role of Globalization on CO2 Emission in Vietnam Incorporating Industrialization, Urbanization, GDP per Capita and Energy Use," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 275-283.
    71. Eyup Dogan & Nigar Taspinar & Korhan K Gokmenoglu, 2019. "Determinants of ecological footprint in MINT countries," Energy & Environment, , vol. 30(6), pages 1065-1086, September.
    72. Xinwei Zhao & Xinsong Yang & Geng Peng & Shengjie Yue, 2023. "International Trade and Carbon Emissions: Evaluating the Role of Trade Rule Uncertainty," Sustainability, MDPI, vol. 15(15), pages 1-19, July.
    73. Chimere O. Iheonu & Ogochukwu C. Anyanwu & Obinna K. Odo & Solomon Prince Nathaniel, 2021. "Does Economic Growth, International Trade and Urbanization uphold Environmental Sustainability in sub-Saharan Africa? Insights from Quantile and Causality Procedures," Working Papers 21/003, European Xtramile Centre of African Studies (EXCAS).
    74. Muntasir Murshed & Rizwan Ahmed & Chamaiporn Kumpamool & Mohga Bassim & Mohamed Elheddad, 2021. "The effects of regional trade integration and renewable energy transition on environmental quality: Evidence from South Asian neighbors," Business Strategy and the Environment, Wiley Blackwell, vol. 30(8), pages 4154-4170, December.
    75. Muhammad Zubair Chishti & Hafiz Syed Muhammad Azeem & Muhammad Kamran Khan, 2023. "Asymmetric nexus between commercial policies and consumption-based carbon emissions: new evidence from Pakistan," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-24, December.
    76. Li, Guo & Zakari, Abdulrasheed & Tawiah, Vincent, 2020. "Energy resource melioration and CO2 emissions in China and Nigeria: Efficiency and trade perspectives," Resources Policy, Elsevier, vol. 68(C).
    77. Danish, & Ulucak, Recep, 2021. "Renewable energy, technological innovation and the environment: A novel dynamic auto-regressive distributive lag simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    78. Luo, Shunjun & Mabrouk, Fatma, 2022. "Nexus between natural resources, globalization and ecological sustainability in resource-rich countries: Dynamic role of green technology and environmental regulation," Resources Policy, Elsevier, vol. 79(C).
    79. Abdul Rehman & Mohammad Mahtab Alam & Magdalena Radulescu & Rafael Alvarado & Daniela Mihai & Madalina Brutu, 2022. "A Novel Investigation to Explore the Impact of Renewable Energy, Urbanization, and Trade on Carbon Emission in Bhutan," Energies, MDPI, vol. 15(9), pages 1-17, April.
    80. Zhang, Rui & Sharma, Rajesh & Tan, Zhixiong & Kautish, Pradeep, 2022. "Do export diversification and stock market development drive carbon intensity? The role of renewable energy solutions in top carbon emitter countries," Renewable Energy, Elsevier, vol. 185(C), pages 1318-1328.
    81. Zeeshan Khan & Ramez Abubakr Badeeb & Taimoor Hassan & Changyong Zhang & Khalid Eltayeb Elfaki, 2023. "Emissions‐Adjusted International Trade for Sustainable Development in China: Evidence from dynamic autoregressive distributed lags model and kernel based regression," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 379-392, February.
    82. Xi, Xian & Zhou, Jinsheng & Gao, Xiangyun & Liu, Donghui & Zheng, Huiling & Sun, Qingru, 2019. "Impact of changes in crude oil trade network patterns on national economy," Energy Economics, Elsevier, vol. 84(C).
    83. Tomiwa Sunday Adebayo & Mehmet Ağa, 2022. "The Race to Zero Emissions in MINT Economies: Can Economic Growth, Renewable Energy and Disintegrated Trade Be the Path to Carbon Neutrality?," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    84. Kin Sibanda & Rufaro Garidzirai & Farai Mushonga & Dorcas Gonese, 2023. "Natural Resource Rents, Institutional Quality, and Environmental Degradation in Resource-Rich Sub-Saharan African Countries," Sustainability, MDPI, vol. 15(2), pages 1-11, January.
    85. Fakhri J. Hasanov & Zeeshan Khan & Muzzammil Hussain & Muhammad Tufail, 2021. "Theoretical Framework for the Carbon Emissions Effects of Technological Progress and Renewable Energy Consumption," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(5), pages 810-822, September.
    86. Wang, Wei & Rehman, Mubeen Abdur & Fahad, Shah, 2022. "The dynamic influence of renewable energy, trade openness, and industrialization on the sustainable environment in G-7 economies," Renewable Energy, Elsevier, vol. 198(C), pages 484-491.
    87. Cho-Hoi Hui & Andrew Wong, 2021. "Do countries adjust the carbon intensity of energy towards targets? The role of financial development on the adjustment," SN Business & Economics, Springer, vol. 1(10), pages 1-30, October.
    88. Haider Mahmood & Tarek Tawfik Yousef Alkhateeb & Maham Furqan, 2020. "Oil sector and CO2 emissions in Saudi Arabia: asymmetry analysis," Palgrave Communications, Palgrave Macmillan, vol. 6(1), pages 1-10, December.
    89. Liu, Xuemei & Yuan, Shuhan & Yu, Haoran & Liu, Zheng, 2023. "How ecological policy stringency moderates the influence of industrial innovation on environmental sustainability: The role of renewable energy transition in BRICST countries," Renewable Energy, Elsevier, vol. 207(C), pages 194-204.
    90. Shahriyar Mukhtarov & Fuzuli Aliyev & Javid Aliyev & Richard Ajayi, 2022. "Renewable Energy Consumption and Carbon Emissions: Evidence from an Oil-Rich Economy," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    91. Brantley Liddle, 2018. "Consumption-Based Accounting and the Trade-Carbon Emissions Nexus in Asia: A Heterogeneous, Common Factor Panel Analysis," Sustainability, MDPI, vol. 10(10), pages 1-13, October.

  21. Brantley Liddle, 2018. "Warming And Income Growth In The United States: A Heterogeneous, Common Factor Dynamic Panel Analysis," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(04), pages 1-14, November.

    Cited by:

    1. Chang, Jun-Jie & Mi, Zhifu & Wei, Yi-Ming, 2023. "Temperature and GDP: A review of climate econometrics analysis," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 383-392.
    2. Shouwei Li & Xin Wu, 2023. "How does climate risk affect bank loan supply? Empirical evidence from China," Economic Change and Restructuring, Springer, vol. 56(4), pages 2169-2204, August.
    3. Jaqueline Oliveira & Bruno Palialol & Paula Pereda, 2021. "Do temperature shocks affect non-agriculture wages in Brazil? Evidence from individual-level panel data," Working Papers, Department of Economics 2021_13, University of São Paulo (FEA-USP).

  22. Liddle, Brantley, 2018. "Consumption-based accounting and the trade-carbon emissions nexus," Energy Economics, Elsevier, vol. 69(C), pages 71-78.

    Cited by:

    1. Zhang, Yang & Hu, Shan & Yan, Da & Jiang, Yi, 2023. "Proposing a carbon emission responsibility allocation method with benchmark approach," Ecological Economics, Elsevier, vol. 213(C).
    2. Yan, Bingqian & Xia, Yan & Jiang, Xuemei, 2023. "Carbon productivity and value-added generations: Regional heterogeneity along global value chain," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 111-125.
    3. Xixuan Guo & Kaixiang Huang & Lanyu Li & Xiaonan Wang, 2022. "Renewable Energy for Balancing Carbon Emissions and Reducing Carbon Transfer under Global Value Chains: A Way Forward," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    4. Zhang, Lulu & Yu, Chang & Cheng, Baodong & Yang, Chao & Chang, Yuan, 2020. "Mitigating climate change by global timber carbon stock: Accounting, flow and allocation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Muhammad, Sulaman & Long, Xingle & Salman, Muhammad & Dauda, Lamini, 2020. "Effect of urbanization and international trade on CO2 emissions across 65 belt and road initiative countries," Energy, Elsevier, vol. 196(C).
    6. Ibrahim, Ridwan Lanre & Ajide, Kazeem Bello, 2021. "The dynamic heterogeneous impacts of nonrenewable energy, trade openness, total natural resource rents, financial development and regulatory quality on environmental quality: Evidence from BRICS econo," Resources Policy, Elsevier, vol. 74(C).
    7. Aihua Wang & Qiqi Ruan & Teng Zhou & Yanzhen Wang, 2022. "Digitizable Product Trade Development and Carbon Emission: Evidence from 94 Countries," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    8. Wu Xie & Shuai Hu & Fangyi Li & Xin Cao & Zhipeng Tang, 2020. "Carbon and Water Footprints of Tibet: Spatial Pattern and Trend Analysis," Sustainability, MDPI, vol. 12(8), pages 1-15, April.
    9. Xiuqin Zhang & Xudong Shi & Yasir Khan & Taimoor Hassan & Mohamed Marie, 2023. "Carbon Neutrality Challenge: Analyse the Role of Energy Productivity, Renewable Energy, and Collaboration in Climate Mitigation Technology in OECD Economies," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    10. Usman Mehmood & Ephraim Bonah Agyekum & Solomon Eghosa Uhunamure & Karabo Shale & Ayesha Mariam, 2022. "Evaluating the Influences of Natural Resources and Ageing People on CO 2 Emissions in G-11 Nations: Application of CS-ARDL Approach," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    11. Hordofa, Tolassa Temesgen & Liying, Song & Mughal, Nafeesa & Arif, Asma & Minh Vu, Hieu & Kaur, Prabjot, 2022. "Natural resources rents and economic performance: Post-COVID-19 era for G7 countries," Resources Policy, Elsevier, vol. 75(C).
    12. Yang, Shuangpeng & umar, Muhammad, 2022. "How globalization is reshaping the environmental quality in G7 economies in the presence of renewable energy initiatives?," Renewable Energy, Elsevier, vol. 193(C), pages 128-135.
    13. Xu, Bin & Lin, Boqiang, 2019. "Can expanding natural gas consumption reduce China's CO2 emissions?," Energy Economics, Elsevier, vol. 81(C), pages 393-407.
    14. Simionescu, Mihaela & Cifuentes-Faura, Javier, 2023. "Sustainability policies to reduce pollution in energy supply and waste sectors in the V4 countries," Utilities Policy, Elsevier, vol. 82(C).
    15. George Kapetanios & Laura Serlenga & Yongcheol Shin, 2023. "Testing for correlation between the regressors and factor loadings in heterogeneous panels with interactive effects," Empirical Economics, Springer, vol. 64(6), pages 2611-2659, June.
    16. Jing Wang & Jie Li, 2021. "Exploring the Impact of International Trade on Carbon Emissions: New Evidence from China’s 282 Cities," Sustainability, MDPI, vol. 13(16), pages 1-12, August.
    17. Chinazaekpere Nwani & Andrew Adewale Alola & Chimobi Philip Omoke & Bosede Ngozi Adeleye & Festus Victor Bekun, 2022. "Responding to the environmental effects of remittances and trade liberalization in net-importing economies: the role of renewable energy in Sub-Saharan Africa," Economic Change and Restructuring, Springer, vol. 55(4), pages 2631-2661, November.
    18. Qian Zhang & Qizhen Wang, 2023. "Digitalization, Electricity Consumption and Carbon Emissions—Evidence from Manufacturing Industries in China," IJERPH, MDPI, vol. 20(5), pages 1-21, February.
    19. Iftikhar Yasin & Nawaz Ahmad & Muhammad Aslam Chaudhary, 2021. "The impact of financial development, political institutions, and urbanization on environmental degradation: evidence from 59 less-developed economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 6698-6721, May.
    20. Miao, Nana & Sharif, Arshian & Ozturk, Ilhan & Razzaq, Asif, 2023. "How do the exploitation of natural resources and fiscal policy affect green growth? Moderating role of ecological governance in G7 countries," Resources Policy, Elsevier, vol. 85(PA).
    21. Hertwich, Edgar G., 2020. "Carbon fueling complex global value chains tripled in the period 1995–2012," Energy Economics, Elsevier, vol. 86(C).
    22. Umar, Muhammad & Safi, Adnan, 2023. "Do green finance and innovation matter for environmental protection? A case of OECD economies," Energy Economics, Elsevier, vol. 119(C).
    23. Sharif, Arshian & Mishra, Shekhar & Sinha, Avik & Jiao, Zhilun & Shahbaz, Muhammad & Afshan, Sahar, 2019. "The Renewable Energy Consumption-Environmental Degradation Nexus in Top-10 Polluted Countries: Fresh Insights from Quantile-on-Quantile Regression Approach," MPRA Paper 97908, University Library of Munich, Germany, revised 01 Jan 2020.
    24. Li, Xuelin & Yang, Lin, 2023. "Natural resources, remittances and carbon emissions: A Dutch Disease perspective with remittances for South Asia," Resources Policy, Elsevier, vol. 85(PB).
    25. Liu, Huiling & Zhang, Jianhua & Lei, Heng, 2022. "Do imported environmental goods reduce pollution intensity? The end use matters," Energy Economics, Elsevier, vol. 112(C).
    26. Recep Ulucak & Danish & Yaoqi Zhang & Rui Chen & Yiting Qiu, 2024. "Income Inequality, Economic Complexity, and Renewable Energy Impacts in Controlling Consumption-Based Carbon Emissions," Evaluation Review, , vol. 48(1), pages 119-142, February.
    27. Frodyma, Katarzyna & Papież, Monika & Śmiech, Sławomir, 2022. "Revisiting the Environmental Kuznets Curve in the European Union countries," Energy, Elsevier, vol. 241(C).
    28. Cheng, Ya & Awan, Usama & Ahmad, Shabbir & Tan, Zhixiong, 2021. "How do technological innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    29. Jalles, Joao Tovar & Ge, Jun, 2020. "Emissions and economic development in commodity exporting countries," Energy Economics, Elsevier, vol. 85(C).
    30. Khan, Zeeshan & Ali, Muhsin & Jinyu, Liu & Shahbaz, Muhammad & Siqun, Yang, 2020. "Consumption-based carbon emissions and trade nexus: Evidence from nine oil exporting countries," Energy Economics, Elsevier, vol. 89(C).
    31. Haoran Wang & Toshiyuki Fujita, 2023. "A Review of Research on Embodied Carbon in International Trade," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    32. Awan, Ashar & Alnour, Mohammed & Jahanger, Atif & Onwe, Joshua Chukwuma, 2022. "Do technological innovation and urbanization mitigate carbon dioxide emissions from the transport sector?," Technology in Society, Elsevier, vol. 71(C).
    33. Satoshi Honma & Yushi Yoshida, 2012. "An Empirical Investigation of the Balance of Embodied Emission in Trade:Industry Structure and Emission Abatement," Discussion Papers 57, Kyushu Sangyo University, Faculty of Economics.
    34. Wang, Kun & Rehman, Mubeen Abdur & Fahad, Shah & Linzhao, Zeng, 2023. "Unleashing the influence of natural resources, sustainable energy and human capital on consumption-based carbon emissions in G-7 Countries," Resources Policy, Elsevier, vol. 81(C).
    35. Karakaya, Etem & Yılmaz, Burcu & Alataş, Sedat, 2018. "How Production Based and Consumption Based Emissions Accounting Systems Change Climate Policy Analysis: The Case of CO2 Convergence," MPRA Paper 88781, University Library of Munich, Germany.
    36. Nwani, Chinazaekpere & Adams, Samuel, 2021. "Environmental cost of natural resource rents based on production and consumption inventories of carbon emissions: Assessing the role of institutional quality," Resources Policy, Elsevier, vol. 74(C).
    37. Zhang, Cuifang & Xiang, Xiandeng, 2023. "Fiscal decentralization, environmental policy stringency, and resource sustainability: Panacea or Pandora's box in high resource consuming countries," Resources Policy, Elsevier, vol. 83(C).
    38. Razzaq, Asif & Sharif, Arshian & Afshan, Sahar & Li, Claire J., 2023. "Do climate technologies and recycling asymmetrically mitigate consumption-based carbon emissions in the United States? New insights from Quantile ARDL," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    39. Gangopadhyay, Partha & Das, Narasingha & Alam, G.M. Monirul & Khan, Uzma & Haseeb, Mohammad & Hossain, Md. Emran, 2023. "Revisiting the carbon pollution-inhibiting policies in the USA using the quantile ARDL methodology: What roles can clean energy and globalization play?," Renewable Energy, Elsevier, vol. 204(C), pages 710-721.
    40. Igor Makarov, 2018. "Discrepancies Between Environmental Kuznets Curves For Production- And Consumption-Based Co2 Emissions," HSE Working papers WP BRP 199/EC/2018, National Research University Higher School of Economics.
    41. Fumei He & Ke-Chiun Chang & Min Li & Xueping Li & Fangjhy Li, 2020. "Bootstrap ARDL Test on the Relationship among Trade, FDI, and CO 2 Emissions: Based on the Experience of BRICS Countries," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    42. Muhammad Usman & Rakhshanda Kousar & Muhammad Sohail Amjad Makhdum & Muhammad Rizwan Yaseen & Abdul Majeed Nadeem, 2023. "Do financial development, economic growth, energy consumption, and trade openness contribute to increase carbon emission in Pakistan? An insight based on ARDL bound testing approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 444-473, January.
    43. Yu, Zhang & Khan, Syed Abdul Rehman & Ponce, Pablo & Lopes de Sousa Jabbour, Ana Beatriz & Chiappetta Jabbour, Charbel Jose, 2022. "Factors affecting carbon emissions in emerging economies in the context of a green recovery: Implications for sustainable development goals," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    44. Yan, Bingqian & Duan, Yuwan & Wang, Shouyang, 2020. "China’s emissions embodied in exports: How regional and trade heterogeneity matter," Energy Economics, Elsevier, vol. 87(C).
    45. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    46. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    47. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2022. "Does the European Union energy policy support progress in decoupling economic growth from emissions?," Energy Policy, Elsevier, vol. 170(C).
    48. Hassan, Taimoor & Song, Huaming & Khan, Yasir & Kirikkaleli, Dervis, 2022. "Energy efficiency a source of low carbon energy sources? Evidence from 16 high-income OECD economies," Energy, Elsevier, vol. 243(C).
    49. Arif, Asma & Minh Vu, Hieu & Cong, Ma & Hon Wei, Leow & Islam, Md. Monirul & Niedbała, Gniewko, 2022. "Natural resources commodity prices volatility and economic performance: Evaluating the role of green finance," Resources Policy, Elsevier, vol. 76(C).
    50. Tomiwa Sunday Adebayo & Abraham Ayobamiji Awosusi & Husam Rjoub & Mirela Panait & Catalin Popescu, 2021. "Asymmetric Impact of International Trade on Consumption-Based Carbon Emissions in MINT Nations," Energies, MDPI, vol. 14(20), pages 1-19, October.
    51. Razzaq, Asif & Wang, Yufeng & Chupradit, Supat & Suksatan, Wanich & Shahzad, Farrukh, 2021. "Asymmetric inter-linkages between green technology innovation and consumption-based carbon emissions in BRICS countries using quantile-on-quantile framework," Technology in Society, Elsevier, vol. 66(C).
    52. Lee, Chien-Chiang & Chen, Mei-Ping & Yuan, Zihao, 2023. "Is information and communication technology a driver for renewable energy?," Energy Economics, Elsevier, vol. 124(C).
    53. Eyup Dogan & Nigar Taspinar & Korhan K Gokmenoglu, 2019. "Determinants of ecological footprint in MINT countries," Energy & Environment, , vol. 30(6), pages 1065-1086, September.
    54. Shaolong Zeng & Minglin Wang, 2023. "Theoretical and empirical analyses on the factors affecting carbon emissions: case of Zhejiang Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2522-2549, March.
    55. Muhammad Zubair Chishti & Hafiz Syed Muhammad Azeem & Muhammad Kamran Khan, 2023. "Asymmetric nexus between commercial policies and consumption-based carbon emissions: new evidence from Pakistan," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-24, December.
    56. Rundong Luo & Sami Ullah & Kishwar Ali, 2021. "Pathway towards Sustainability in Selected Asian Countries: Influence of Green Investment, Technology Innovations, and Economic Growth on CO2 Emission," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    57. Qian Wang & Cuiyun Gao & Shuanping Dai, 2019. "Effect of the Emissions Trading Scheme on CO 2 Abatement in China," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    58. Nihit Goyal, 2021. "Limited Demand or Unreliable Supply? A Bibliometric Review and Computational Text Analysis of Research on Energy Policy in India," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    59. Rajesh Sharma & Muhammad Shahbaz & Pradeep Kautish & Xuan Vinh Vo, 2023. "Diversified imports as catalysts for ecological footprint: examining the BRICS experience," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3153-3181, April.
    60. Sun, Yunpeng & Ajaz, Tahseen & Razzaq, Asif, 2022. "How infrastructure development and technical efficiency change caused resources consumption in BRICS countries: Analysis based on energy, transport, ICT, and financial infrastructure indices," Resources Policy, Elsevier, vol. 79(C).
    61. Hasanov, Fakhri J. & Liddle, Brantley & Mikayilov, Jeyhun I., 2018. "The impact of international trade on CO2 emissions in oil exporting countries: Territory vs consumption emissions accounting," Energy Economics, Elsevier, vol. 74(C), pages 343-350.
    62. Jin, Guangzhu & Huang, Zhenhui, 2023. "Asymmetric influence of China's outward FDI and exports on trade-adjusted resources footprint in belt and road node countries: Moderating role of governance," Resources Policy, Elsevier, vol. 82(C).
    63. Wang, Wei & Rehman, Mubeen Abdur & Fahad, Shah, 2022. "The dynamic influence of renewable energy, trade openness, and industrialization on the sustainable environment in G-7 economies," Renewable Energy, Elsevier, vol. 198(C), pages 484-491.
    64. Cho-Hoi Hui & Andrew Wong, 2021. "Do countries adjust the carbon intensity of energy towards targets? The role of financial development on the adjustment," SN Business & Economics, Springer, vol. 1(10), pages 1-30, October.
    65. Liu, Xuemei & Yuan, Shuhan & Yu, Haoran & Liu, Zheng, 2023. "How ecological policy stringency moderates the influence of industrial innovation on environmental sustainability: The role of renewable energy transition in BRICST countries," Renewable Energy, Elsevier, vol. 207(C), pages 194-204.
    66. Shahriyar Mukhtarov & Fuzuli Aliyev & Javid Aliyev & Richard Ajayi, 2022. "Renewable Energy Consumption and Carbon Emissions: Evidence from an Oil-Rich Economy," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    67. Brantley Liddle, 2018. "Consumption-Based Accounting and the Trade-Carbon Emissions Nexus in Asia: A Heterogeneous, Common Factor Panel Analysis," Sustainability, MDPI, vol. 10(10), pages 1-13, October.

  23. Brantley Liddle & George Messinis, 2018. "Revisiting carbon Kuznets curves with endogenous breaks modeling: evidence of decoupling and saturation (but few inverted-Us) for individual OECD countries," Empirical Economics, Springer, vol. 54(2), pages 783-798, March. See citations under working paper version above.
  24. Liddle, Brantley & Sadorsky, Perry, 2017. "How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions?," Applied Energy, Elsevier, vol. 197(C), pages 212-221.

    Cited by:

    1. Yang, Xiaohu & Guo, Junfei & Yang, Bo & Cheng, Haonan & Wei, Pan & He, Ya-Ling, 2020. "Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit," Applied Energy, Elsevier, vol. 279(C).
    2. Ji, Junping & Tang, Hua & Jin, Peng, 2019. "Economic potential to develop concentrating solar power in China: A provincial assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Adedoyin, Festus Fatai & Alola, Andrew Adewale & Bekun, Festus Victor, 2021. "The alternative energy utilization and common regional trade outlook in EU-27: Evidence from common correlated effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Jiang, Hongdian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2020. "What drives China's natural gas consumption? Analysis of national and regional estimates," Energy Economics, Elsevier, vol. 87(C).
    5. Cheng Cheng & Xiaohang Ren & Zhen Wang & Yukun Shi, 2018. "The Impacts of Non-Fossil Energy, Economic Growth, Energy Consumption, and Oil Price on Carbon Intensity: Evidence from a Panel Quantile Regression Analysis of EU 28," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    6. Ragab El-Sehiemy & Mohamed A. Hamida & Ehab Elattar & Abdullah Shaheen & Ahmed Ginidi, 2022. "Nonlinear Dynamic Model for Parameter Estimation of Li-Ion Batteries Using Supply–Demand Algorithm," Energies, MDPI, vol. 15(13), pages 1-20, June.
    7. Junsong Jia & Jing Lei & Chundi Chen & Xu Song & Yexi Zhong, 2021. "Contribution of Renewable Energy Consumption to CO 2 Emission Mitigation: A Comparative Analysis from a Global Geographic Perspective," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    8. Shijie Yang & Yunjia Wang & Rongqing Han & Yong Chang & Xihua Sun, 2021. "Spatial Heterogeneity of Factors Influencing CO 2 Emissions in China’s High-Energy-Intensive Industries," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    9. Hadi Tannous & Valentina Stojceska & Savas A. Tassou, 2023. "The Use of Solar Thermal Heating in SPIRE and Non-SPIRE Industrial Processes," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    10. Aliya Zhakanova Isiksal, 2021. "The financial sector expansion effect on renewable electricity production: case of the BRICS countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9029-9051, June.
    11. Mahdiloo, Mahdi & Ngwenyama, Ojelanki & Scheepers, Rens & Tamaddoni, Ali, 2018. "Managing emissions allowances of electricity producers to maximize CO2 abatement: DEA models for analyzing emissions and allocating emissions allowances," International Journal of Production Economics, Elsevier, vol. 205(C), pages 244-255.
    12. Li, Yingcheng, 2022. "Path-breaking industrial development reduces carbon emissions: Evidence from Chinese Provinces, 1999–2011," Energy Policy, Elsevier, vol. 167(C).
    13. Yuegang Song & Umer Shahzad & Sudharshan Reddy Paramati, 2023. "Impact of energy infrastructure investments on renewable electricity generation in major Asian developing economies," Australian Economic Papers, Wiley Blackwell, vol. 62(1), pages 1-23, March.
    14. Xiaosan, Zhang & Qingquan, Jiang & Shoukat Iqbal, Khattak & Manzoor, Ahmad & Zia Ur, Rahman, 2021. "Achieving sustainability and energy efficiency goals: Assessing the impact of hydroelectric and renewable electricity generation on carbon dioxide emission in China," Energy Policy, Elsevier, vol. 155(C).
    15. Shumin Jiang & Chen Yang & Jingtao Guo & Zhanwen Ding & Lixin Tian & Jianmei Zhang, 2017. "Uncovering the Driving Factors of Carbon Emissions in an Investment Allocation Model of China’s High-Carbon and Low-Carbon Energy," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
    16. Naeem, Muhammad Abubakr & Appiah, Michael & Taden, John & Amoasi, Richard & Gyamfi, Bright Akwasi, 2023. "Transitioning to clean energy: Assessing the impact of renewable energy, bio-capacity and access to clean fuel on carbon emissions in OECD economies," Energy Economics, Elsevier, vol. 127(PA).
    17. Zhao, Congyu & Wang, Kun & Dong, Xiucheng & Dong, Kangyin, 2022. "Is smart transportation associated with reduced carbon emissions? The case of China," Energy Economics, Elsevier, vol. 105(C).
    18. Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.
    19. Peng Zheng & Lingling Zhu & Wei Lu & Xin Yao, 2021. "The effects of electricity substitution in Fujian: based on microdata survey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9320-9335, June.
    20. Wang, Yongpei & Li, Jun, 2019. "Spatial spillover effect of non-fossil fuel power generation on carbon dioxide emissions across China's provinces," Renewable Energy, Elsevier, vol. 136(C), pages 317-330.
    21. Kubiat Umoh & Mark Lemon, 2020. "Drivers for and Barriers to the Take up of Floating Offshore Wind Technology: A Comparison of Scotland and South Africa," Energies, MDPI, vol. 13(21), pages 1-21, October.
    22. Lin-Ju Chen & Zhen-Hai Fang & Fei Xie & Hai-Kuo Dong & Yu-Heng Zhou, 2020. "Technology-side carbon abatement cost curves for China’s power generation sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1305-1323, October.
    23. Peter Tauš & Martin Beer, 2022. "Evaluation of the Hydropower Potential of the Torysa River and Its Energy Use in the Process of Reducing Energy Poverty of Local Communities," Energies, MDPI, vol. 15(10), pages 1-15, May.
    24. Huang, Tian-en & Guo, Qinglai & Sun, Hongbin & Tan, Chin-Woo & Hu, Tianyu, 2019. "A deep spatial-temporal data-driven approach considering microclimates for power system security assessment," Applied Energy, Elsevier, vol. 237(C), pages 36-48.
    25. Muhammad Imran & Sajid Ali & Yousef Shahwan & Jijian Zhang & Issa Ahmad Al-Swiety, 2022. "Analyzing the Effects of Renewable and Nonrenewable Energy Usage and Technological Innovation on Environmental Sustainability: Evidence from QUAD Economies," Sustainability, MDPI, vol. 14(23), pages 1-16, November.

  25. Parker, Steven & Liddle, Brant, 2017. "Analysing energy productivity dynamics in the OECD manufacturing sector," Energy Economics, Elsevier, vol. 67(C), pages 91-97.

    Cited by:

    1. E. E. Rumyantseva, 2018. "The Russian industry: the problems and the further development," Russian Journal of Industrial Economics, MISIS, vol. 11(2).
    2. Michał Gostkowski & Tomasz Rokicki & Luiza Ochnio & Grzegorz Koszela & Kamil Wojtczuk & Marcin Ratajczak & Hubert Szczepaniuk & Piotr Bórawski & Aneta Bełdycka-Bórawska, 2021. "Clustering Analysis of Energy Consumption in the Countries of the Visegrad Group," Energies, MDPI, vol. 14(18), pages 1-25, September.
    3. Chunyan Lin & Wen Qiao, 2022. "Statistical Measurements and Club Effects of High-Quality Development in Chinese Manufacturing," IJERPH, MDPI, vol. 19(23), pages 1-22, December.
    4. Song, Yang & Liu, Dayu & Wang, Qiaoru, 2021. "Identifying characteristic changes in club convergence of China's urban pollution emission: A spatial-temporal feature analysis," Energy Economics, Elsevier, vol. 98(C).
    5. Ivanovski, Kris & Awaworyi Churchill, Sefa & Smyth, Russell, 2018. "A club convergence analysis of per capita energy consumption across Australian regions and sectors," Energy Economics, Elsevier, vol. 76(C), pages 519-531.
    6. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Convergence of energy productivity in Australian states and territories: Determinants and forecasts," Energy Economics, Elsevier, vol. 85(C).
    7. Bhattacharya, Mita & Inekwe, John Nkwoma & Sadorsky, Perry & Saha, Anjan, 2018. "Convergence of energy productivity across Indian states and territories," Energy Economics, Elsevier, vol. 74(C), pages 427-440.
    8. Kerner, Philip & Wendler, Tobias, 2022. "Convergence in resource productivity," World Development, Elsevier, vol. 158(C).
    9. Sayel Basel & R. Prabhakara Rao & K. U. Gopakumar, 2021. "Analysis of club convergence for economies: identification and testing using development indices," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 885-908, October.
    10. Zhao, Jing & Sinha, Avik & Inuwa, Nasiru & Wang, Yihan & Murshed, Muntasir & Abbasi, Kashif Raza, 2022. "Does structural transformation in economy impact inequality in renewable energy productivity? Implications for sustainable development," Renewable Energy, Elsevier, vol. 189(C), pages 853-864.

  26. Brantley Liddle, 2017. "Accounting for Nonlinearity, Asymmetry, Heterogeneity, and Cross-Sectional Dependence in Energy Modeling: US State-Level Panel Analysis," Economies, MDPI, vol. 5(3), pages 1-11, August.

    Cited by:

    1. Clement Olalekan Olaniyi, 2022. "On the transmission mechanisms in the finance–growth nexus in Southern African countries: Does institution matter?," Economic Change and Restructuring, Springer, vol. 55(1), pages 153-191, February.
    2. Cao, K.H. & Qi, H.S. & Li, R. & Woo, C.K. & Tishler, A. & Zarnikau, J., 2023. "An experiment in own-price elasticity estimation for non-residential electricity demand in the U.S," Utilities Policy, Elsevier, vol. 81(C).
    3. Boyoon Chang & Sung Jin Kang & Tae Yong Jung, 2019. "Price and Output Elasticities of Energy Demand for Industrial Sectors in OECD Countries," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    4. Chung-Siong Tang & Mori Kogid & James Alin & Brian Dollery, 2022. "Modelling Sectoral Energy Consumption in Malaysia: Assessing the Asymmetric Effects," Sustainability, MDPI, vol. 14(3), pages 1-17, February.

  27. Parker, Steven & Liddle, Brantley, 2017. "Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries," Energy Economics, Elsevier, vol. 62(C), pages 338-346.

    Cited by:

    1. Yan Wang & Yuan Gong & Caiquan Bai & Hong Yan & Xing Yi, 2023. "Exploring the convergence patterns of PM2.5 in Chinese cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 708-733, January.
    2. Apergis, Nicholas & Ewing, Bradley T. & Payne, James E., 2017. "Introduction: Symposium on Energy Sector Convergence," Energy Economics, Elsevier, vol. 62(C), pages 335-337.
    3. Mehmet Balcilar & Firat Emir, 2018. "The Dynamics of Energy Intensity Convergence in the EU-28 Countries," Working Papers 15-37, Eastern Mediterranean University, Department of Economics.
    4. Michał Gostkowski & Tomasz Rokicki & Luiza Ochnio & Grzegorz Koszela & Kamil Wojtczuk & Marcin Ratajczak & Hubert Szczepaniuk & Piotr Bórawski & Aneta Bełdycka-Bórawska, 2021. "Clustering Analysis of Energy Consumption in the Countries of the Visegrad Group," Energies, MDPI, vol. 14(18), pages 1-25, September.
    5. Prantik Bagchi & Santosh Kumar Sahu & Ajay Kumar & Kim Hua Tan, 2022. "Analysis of carbon productivity for firms in the manufacturing sector of India," Post-Print hal-03628401, HAL.
    6. Parker, Steven & Bhatti, M. Ishaq, 2020. "Dynamics and drivers of per capita CO2 emissions in Asia," Energy Economics, Elsevier, vol. 89(C).
    7. He, Weijun & Chen, Hao, 2022. "Will China's provincial per capita energy consumption converge to a common level over 1990–2017? Evidence from a club convergence approach," Energy, Elsevier, vol. 249(C).
    8. Ivanovski, Kris & Awaworyi Churchill, Sefa & Smyth, Russell, 2018. "A club convergence analysis of per capita energy consumption across Australian regions and sectors," Energy Economics, Elsevier, vol. 76(C), pages 519-531.
    9. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Convergence of energy productivity in Australian states and territories: Determinants and forecasts," Energy Economics, Elsevier, vol. 85(C).
    10. Ming Luo & Ruguo Fan & Yingqing Zhang, 2017. "A Study on China’s Urban Electricity Productivity Convergence with Spatial Smooth Transition Effect," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    11. Wei, Jia & Wen, Jun & Wang, Xiao-Yang & Ma, Jie & Chang, Chun-Ping, 2023. "Green innovation, natural extreme events, and energy transition: Evidence from Asia-Pacific economies," Energy Economics, Elsevier, vol. 121(C).
    12. Alexander Melnik & Irina Naoumova & Kirill Ermolaev & Jerome Katrichis, 2021. "Driving Innovation through Energy Efficiency: A Russian Regional Analysis," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    13. Bhattacharya, Mita & Inekwe, John Nkwoma & Sadorsky, Perry & Saha, Anjan, 2018. "Convergence of energy productivity across Indian states and territories," Energy Economics, Elsevier, vol. 74(C), pages 427-440.
    14. Goto, Mika & Sueyoshi, Toshiyuki, 2023. "Sustainable development and convergence under energy sector transition in industrial nations: An application of DEA environmental assessment," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    15. Yuanxin Peng & Zhuo Chen & Jay Lee, 2020. "Dynamic Convergence of Green Total Factor Productivity in Chinese Cities," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    16. Bai, Caiquan & Yan, Hong & Yin, Shanggang & Feng, Chen & Wei, Qian, 2021. "Exploring the development trend of internet finance in China: Perspective from club convergence," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    17. Parker, Steven & Liddle, Brant, 2017. "Analysing energy productivity dynamics in the OECD manufacturing sector," Energy Economics, Elsevier, vol. 67(C), pages 91-97.
    18. Kerner, Philip & Wendler, Tobias, 2022. "Convergence in resource productivity," World Development, Elsevier, vol. 158(C).
    19. Bashir, Muhammad Farhan & MA, Benjiang & Shahbaz, Muhammad & Shahzad, Umer & Vo, Xuan Vinh, 2021. "Unveiling the heterogeneous impacts of environmental taxes on energy consumption and energy intensity: Empirical evidence from OECD countries," Energy, Elsevier, vol. 226(C).
    20. Peng, Hua-Rong & Tan, Xiujie & Managi, Shunsuke & Taghizadeh-Hesary, Farhad, 2022. "Club convergence in energy efficiency of Belt and Road Initiative countries: The role of China’s outward foreign direct investment," Energy Policy, Elsevier, vol. 168(C).

  28. Parker, Steven & Liddle, Brantley, 2016. "Energy efficiency in the manufacturing sector of the OECD: Analysis of price elasticities," Energy Economics, Elsevier, vol. 58(C), pages 38-45.

    Cited by:

    1. Boyd, Gale A. & Lee, Jonathan M., 2019. "Measuring plant level energy efficiency and technical change in the U.S. metal-based durable manufacturing sector using stochastic frontier analysis," Energy Economics, Elsevier, vol. 81(C), pages 159-174.
    2. Ajayi, V. & Reiner, D., 2018. "European Industrial Energy Intensity: The Role of Innovation 1995-2009," Cambridge Working Papers in Economics 1835, Faculty of Economics, University of Cambridge.
    3. Bashir, Muhammad Adnan & Sheng, Bin & Doğan, Buhari & Sarwar, Suleman & Shahzad, Umer, 2020. "Export product diversification and energy efficiency: Empirical evidence from OECD countries," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 232-243.
    4. Santosh Kumar Sahu & Prantik Bagchi & Ajay Kumar & Kim Hua Tan, 2022. "Technology, price instruments and energy intensity: a study of firms in the manufacturing sector of the Indian economy," Annals of Operations Research, Springer, vol. 313(1), pages 319-339, June.
    5. Chen, Yu & Lin, Boqiang, 2021. "Understanding the green total factor energy efficiency gap between regional manufacturing—insight from infrastructure development," Energy, Elsevier, vol. 237(C).
    6. Lin, Boqiang & Chen, Yu, 2019. "Will economic infrastructure development affect the energy intensity of China's manufacturing industry?," Energy Policy, Elsevier, vol. 132(C), pages 122-131.
    7. Le Tang, 2020. "Energy prices and investment in energy efficiency: evidence from Chinese industry 1997–2004," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 34(2), pages 93-105, November.
    8. Kamyabi, Najmeh & Chidmi, Benaissa, 2022. "Gasoline demand in the United States: An asymmetric economic analysis," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).
    9. Dargahi, Hassan & Khameneh, Kazem Biabany, 2019. "Energy intensity determinants in an energy-exporting developing economy: Case of Iran," Energy, Elsevier, vol. 168(C), pages 1031-1044.
    10. Qi, Shaozhou & Peng, Huarong & Zhang, Xiaoling & Tan, Xiujie, 2019. "Is energy efficiency of Belt and Road Initiative countries catching up or falling behind? Evidence from a panel quantile regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Choi, Bongseok & Park, Wooyoung & Yu, Bok-Keun, 2017. "Energy intensity and firm growth," Energy Economics, Elsevier, vol. 65(C), pages 399-410.
    12. Oleg Badunenko & Subal C. Kumbhakar, 2020. "Energy Intensity and Long- and Short-Term Efficiency in US Manufacturing Industry," Energies, MDPI, vol. 13(15), pages 1-21, August.
    13. Chen, Bin & Yan, Jun & Zhu, Xun & Liu, Yue, 2023. "The potential role of renewable power penetration in energy intensity reduction: Evidence from the Chinese provincial electricity sector," Energy Economics, Elsevier, vol. 127(PB).
    14. Pan, Xiongfeng & Uddin, Md. Kamal & Saima, Umme & Jiao, Zhiming & Han, Cuicui, 2019. "How do industrialization and trade openness influence energy intensity? Evidence from a path model in case of Bangladesh," Energy Policy, Elsevier, vol. 133(C).
    15. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).
    16. Lin, Boqiang & Chen, Yu, 2020. "Transportation infrastructure and efficient energy services: A perspective of China's manufacturing industry," Energy Economics, Elsevier, vol. 89(C).
    17. Gorus, Muhammed Sehid & Karagol, Erdal Tanas, 2022. "Reactions of energy intensity, energy efficiency, and activity indexes to income and energy price changes: The panel data evidence from OECD countries," Energy, Elsevier, vol. 254(PA).
    18. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    19. Azhgaliyeva, Dina & Liu, Yang & Liddle, Brantley, 2020. "An empirical analysis of energy intensity and the role of policy instruments," Energy Policy, Elsevier, vol. 145(C).
    20. Tiwari, Aviral Kumar & Eapen, Leena Mary & Nair, Sthanu R, 2021. "Electricity consumption and economic growth at the state and sectoral level in India: Evidence using heterogeneous panel data methods," Energy Economics, Elsevier, vol. 94(C).
    21. Paramati, Sudharshan Reddy & Shahzad, Umer & Doğan, Buhari, 2022. "The role of environmental technology for energy demand and energy efficiency: Evidence from OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    22. Liddle, Brantley & Sadorsky, Perry, 2020. "How much do asymmetric changes in income and energy prices affect energy demand?," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    23. Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
    24. Hsiao, Kai-Long, 2017. "To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method," Energy, Elsevier, vol. 130(C), pages 486-499.
    25. Parker, Steven & Liddle, Brant, 2017. "Analysing energy productivity dynamics in the OECD manufacturing sector," Energy Economics, Elsevier, vol. 67(C), pages 91-97.
    26. Jain, Princy & Goswami, Binoy, 2021. "Energy efficiency in South Asia: Trends and determinants," Energy, Elsevier, vol. 221(C).
    27. Lin, Boqiang & Chen, Yu, 2020. "Will land transport infrastructure affect the energy and carbon dioxide emissions performance of China’s manufacturing industry?," Applied Energy, Elsevier, vol. 260(C).
    28. Perillo, Frederico & Pereira da Silva, Patrícia & Cerqueira, Pedro A., 2022. "Decoupling efficiency from electricity intensity: An empirical assessment in the EU," Energy Policy, Elsevier, vol. 169(C).
    29. Wojciech Chmielewski & Marta Postuła & Przemysław Dubel, 2023. "The Impact of Expenditure on Research and Development on Selected Energy Factors in the European Union," Energies, MDPI, vol. 16(8), pages 1-18, April.

  29. Liddle, Brantley & Messinis, George, 2015. "Revisiting sulfur Kuznets curves with endogenous breaks modeling: Substantial evidence of inverted-Us/Vs for individual OECD countries," Economic Modelling, Elsevier, vol. 49(C), pages 278-285. See citations under working paper version above.
  30. Liddle, Brantley & Lung, Sidney, 2015. "Revisiting energy consumption and GDP causality: Importance of a priori hypothesis testing, disaggregated data, and heterogeneous panels," Applied Energy, Elsevier, vol. 142(C), pages 44-55.

    Cited by:

    1. Ar'anzazu de Juan & Pilar Poncela & Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2022. "Economic activity and climate change," Papers 2206.03187, arXiv.org, revised Jun 2022.
    2. Jeyhun I. Mikayilov & Shahriyar Mukhtarov & Hasan Dinçer & Serhat Yüksel & Rıdvan Aydın, 2020. "Elasticity Analysis of Fossil Energy Sources for Sustainable Economies: A Case of Gasoline Consumption in Turkey," Energies, MDPI, vol. 13(3), pages 1-15, February.
    3. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.
    4. Chai, Jingxia & Wu, Haitao & Hao, Yu, 2022. "Planned economic growth and controlled energy demand: How do regional growth targets affect energy consumption in China?," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    5. Melikoglu, Mehmet, 2017. "Geothermal energy in Turkey and around the World: A review of the literature and an analysis based on Turkey's Vision 2023 energy targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 485-492.
    6. Lei Jiang & Ling Bai, 2017. "Revisiting the Granger Causality Relationship between Energy Consumption and Economic Growth in China: A Multi-Timescale Decomposition Approach," Sustainability, MDPI, vol. 9(12), pages 1-17, December.
    7. Saldivia, Mauricio & Kristjanpoller, Werner & Olson, Josephine E., 2020. "Energy consumption and GDP revisited: A new panel data approach with wavelet decomposition," Applied Energy, Elsevier, vol. 272(C).
    8. Liu, Da & Ruan, Liang & Liu, Jinchen & Huan, Huang & Zhang, Guowei & Feng, Yi & Li, Ying, 2018. "Electricity consumption and economic growth nexus in Beijing: A causal analysis of quarterly sectoral data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2498-2503.
    9. Md zulquar Nain & Sai sailaja Bharatam & Bandi Kamaiah, 2017. "Electricity consumption and NSDP nexus in Indian states: a panel analysis with structural breaks," Economics Bulletin, AccessEcon, vol. 37(3), pages 1581-1601.
    10. Lei Wen & Fei Yan, 2018. "Regional differences and influencing factors in the CO2 emissions of China’s power industry based on the panel data models considering power-consuming efficiency factor," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 1987-2007, October.
    11. Atanu Ghoshray & Yurena Mendoza & Mercedes Monfort & Javier Ordoñez, 2018. "Re-assessing causality between energy consumption and economic growth," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-15, November.
    12. Mario Gómez & Aitor Ciarreta & Ainhoa Zarraga, 2018. "Linear and Nonlinear Causality between Energy Consumption and Economic Growth: The Case of Mexico 1965–2014," Energies, MDPI, vol. 11(4), pages 1-15, March.
    13. Wang, Yuanping & Hou, Lingchun & Cai, Weiguang & Zhou, Zhaoyin & Bian, Jing, 2023. "Exploring the drivers and influencing mechanisms of urban household electricity consumption in China - Based on longitudinal data at the provincial level," Energy, Elsevier, vol. 273(C).
    14. Anca Mehedintu & Mihaela Sterpu & Georgeta Soava, 2018. "Estimation and Forecasts for the Share of Renewable Energy Consumption in Final Energy Consumption by 2020 in the European Union," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    15. Xu, Bin & Lin, Boqiang, 2016. "Regional differences in the CO2 emissions of China's iron and steel industry: Regional heterogeneity," Energy Policy, Elsevier, vol. 88(C), pages 422-434.
    16. Syed Zwick, Hélène & Syed, Sarfaraz Ali Shah & Liddle, Brantley & Lung, Sidney, 2017. "Disaggregated relationship between economic growth and energy use in OECD countries: Time-series and cross-country evidence," MPRA Paper 93271, University Library of Munich, Germany.
    17. Mahalingam, Brinda & Orman, Wafa Hakim, 2018. "GDP and energy consumption: A panel analysis of the US," Applied Energy, Elsevier, vol. 213(C), pages 208-218.
    18. Tomasz Rokicki & Grzegorz Koszela & Luiza Ochnio & Kamil Wojtczuk & Marcin Ratajczak & Hubert Szczepaniuk & Konrad Michalski & Piotr Bórawski & Aneta Bełdycka-Bórawska, 2021. "Diversity and Changes in Energy Consumption by Transport in EU Countries," Energies, MDPI, vol. 14(17), pages 1-21, August.
    19. Paul J. Burke & Zsuzsanna Csereklyei, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," CAMA Working Papers 2016-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    20. Bildirici, Melike E. & Gökmenoğlu, Seyit M., 2017. "Environmental pollution, hydropower energy consumption and economic growth: Evidence from G7 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 68-85.
    21. Xu, Bin & Lin, Boqiang, 2016. "Differences in regional emissions in China's transport sector: Determinants and reduction strategies," Energy, Elsevier, vol. 95(C), pages 459-470.
    22. Rodríguez-Caballero, Carlos Vladimir, 2022. "Energy consumption and GDP: a panel data analysis with multi-level cross-sectional dependence," Econometrics and Statistics, Elsevier, vol. 23(C), pages 128-146.
    23. Shaozhou Qi & Huarong Peng & Xiujie Tan, 2019. "The Moderating Effect of R&D Investment on Income and Carbon Emissions in China: Direct and Spatial Spillover Insights," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    24. Amri, Fethi, 2017. "The relationship amongst energy consumption (renewable and non-renewable), and GDP in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 62-71.
    25. Dogan, Eyup & Aslan, Alper, 2017. "Exploring the relationship among CO2 emissions, real GDP, energy consumption and tourism in the EU and candidate countries: Evidence from panel models robust to heterogeneity and cross-sectional depen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 239-245.
    26. Yuanping Wang & Weiguang Cai & Lingchun Hou & Zhaoyin Zhou & Jing Bian, 2022. "Examining the Provincial-Level Difference and Impact Factors of Urban Household Electricity Consumption in China—Based on the Extended STIRPAT Model," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    27. Charifa Haouraji & Badia Mounir & Ilham Mounir & Abdelmajid Farchi, 2021. "Exploring the Relationship between Residential CO 2 Emissions, Urbanization, Economic Growth, and Residential Energy Consumption: Evidence from the North Africa Region," Energies, MDPI, vol. 14(18), pages 1-19, September.
    28. Xia Yang & Meng Cui, 2022. "The Effect of Energy Consumption on China’s Regional Economic Growth from a Spatial Spillover Perspective," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    29. Jian Zhang & Zhaoguang Hu & Yanan Zheng & Yuhui Zhou & Ziwei Wan, 2017. "Sectoral Electricity Consumption and Economic Growth: The Time Difference Case of China, 2006–2015," Energies, MDPI, vol. 10(2), pages 1-14, February.
    30. Dalia M. Ibrahiem, 2018. "Road energy consumption, economic growth, population and urbanization in Egypt: cointegration and causality analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1053-1066, June.

  31. Liddle, Brantley & Lung, Sidney, 2015. "The endogeneity of OECD gasoline taxes: Evidence from pair-wise, heterogeneous panel long-run causality tests," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 31-38.

    Cited by:

    1. Kakali Kanjilal & Sajal Ghosh, 2018. "Revisiting income and price elasticity of gasoline demand in India: new evidence from cointegration tests," Empirical Economics, Springer, vol. 55(4), pages 1869-1888, December.

  32. Brantley Liddle & George Messinis, 2015. "Which comes first - urbanization or economic growth? Evidence from heterogeneous panel causality tests," Applied Economics Letters, Taylor & Francis Journals, vol. 22(5), pages 349-355, March.
    See citations under working paper version above.
  33. Liddle, Brantley & Lung, Sidney, 2013. "The long-run causal relationship between transport energy consumption and GDP: Evidence from heterogeneous panel methods robust to cross-sectional dependence," Economics Letters, Elsevier, vol. 121(3), pages 524-527.

    Cited by:

    1. Chletsos Michael & Roupakias Stelios, 2020. "The effect of military spending on income inequality: evidence from NATO countries," Empirical Economics, Springer, vol. 58(3), pages 1305-1337, March.
    2. Li, Zheng & Zeng, Jingjing & Hensher, David A., 2023. "An efficient approach to structural breaks and the case of automobile gasoline consumption in Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    3. Romualdas Ginevicius & Gintaras Sinkevicius, 2020. "Quantitative Assessment of the Dynamics of Rail Freight Transportation," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 22(54), pages 579-579, April.
    4. Arvin, Mak B. & Pradhan, Rudra P. & Norman, Neville R., 2015. "Transportation intensity, urbanization, economic growth, and CO2 emissions in the G-20 countries," Utilities Policy, Elsevier, vol. 35(C), pages 50-66.
    5. Joanna Domagała & Marta Kadłubek, 2022. "Economic, Energy and Environmental Efficiency of Road Freight Transportation Sector in the EU," Energies, MDPI, vol. 16(1), pages 1-28, December.
    6. Saidi, Samir & Shahbaz, Muhammad & Akhtar, Pervaiz, 2018. "The long-run relationships between transport energy consumption, transport infrastructure, and economic growth in MENA countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 78-95.
    7. Nasreen, Samia & Mbarek, Mounir Ben & Atiq-ur-Rehman, Muhammad, 2020. "Long-run causal relationship between economic growth, transport energy consumption and environmental quality in Asian countries: Evidence from heterogeneous panel methods," Energy, Elsevier, vol. 192(C).
    8. Pradhan, Rudra P. & Arvin, Mak B. & Ghoshray, Atanu, 2015. "The dynamics of economic growth, oil prices, stock market depth, and other macroeconomic variables: Evidence from the G-20 countries," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 84-95.
    9. Shafique, Muhammad & Azam, Anam & Rafiq, Muhammad & Luo, Xiaowei, 2021. "Investigating the nexus among transport, economic growth and environmental degradation: Evidence from panel ARDL approach," Transport Policy, Elsevier, vol. 109(C), pages 61-71.
    10. Lian Xue & Mohammad Haseeb & Haider Mahmood & Tarek Tawfik Yousef Alkhateeb & Muntasir Murshed, 2021. "Renewable Energy Use and Ecological Footprints Mitigation: Evidence from Selected South Asian Economies," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    11. Xiaodong Li & Ai Ren & Qi Li, 2022. "Exploring Patterns of Transportation-Related CO 2 Emissions Using Machine Learning Methods," Sustainability, MDPI, vol. 14(8), pages 1-21, April.
    12. Du, Zhili & Lin, Boqiang, 2019. "Changes in automobile energy consumption during urbanization: Evidence from 279 cities in China," Energy Policy, Elsevier, vol. 132(C), pages 309-317.
    13. Özer, Mustafa & Canbay, Şerif & Kırca, Mustafa, 2021. "The impact of container transport on economic growth in Turkey: An ARDL bounds testing approach," Research in Transportation Economics, Elsevier, vol. 88(C).
    14. Siti Inayatul Faizah & Uus Ahmad Husaeni, 2018. "Development of Consumption and Supplying Energy in Indonesia s Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 313-321.
    15. Musibau, Hammed & Yanotti, Maria Belen & Nepal, Rabindra & Vespignani, Joaquin, 2021. "Environmental Performance in the West African Economy: MM-Quantile and 2SLS Approach," MPRA Paper 110627, University Library of Munich, Germany.
    16. Samir, Saidi & Shahbaz, Muhammad & Akhtar, Pervaiz, 2018. "The Long-Run Relationship between Transport Energy Consumption and Transport Infrastructure on Economic Growth in MENA Countries," MPRA Paper 85037, University Library of Munich, Germany, revised 06 Mar 2018.
    17. Lin, Boqiang & Du, Zhili, 2015. "How China׳s urbanization impacts transport energy consumption in the face of income disparity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1693-1701.
    18. Leonty Viktorovich Eder & Irina Filimonova & Vasiliy Nemov & Irina Provornaya, 2018. "Forecasting Sustainable Development of Transport Sectors of Russia and EU: Energy Consumption and Efficiency," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 74-80.
    19. Leontiy Eder & Irina Filimonova & Vasiliy Nemov & Irina Provornaya, 2017. "Forecasting of Energy and Petroleum Consumption by Motor Transport in the Regions of the Russian Federation," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(3), pages 859-870.
    20. Sónia Almeida Neves & António Cardoso Marques & José Alberto Fuinhas, 2018. "Could alternative energy sources in the transport sector decarbonise the economy without compromising economic growth?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 23-40, December.
    21. Mohmand, Yasir Tariq & Mehmood, Fahad & Mughal, Khurrum Shahzad & Aslam, Faheem, 2021. "Investigating the causal relationship between transport infrastructure, economic growth and transport emissions in Pakistan," Research in Transportation Economics, Elsevier, vol. 88(C).
    22. Shahbaz, Muhammad & Khraief, Naceur & Jemaa, Mohamed Mekki Ben, 2015. "On the causal nexus of road transport CO2 emissions and macroeconomic variables in Tunisia: Evidence from combined cointegration tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 89-100.
    23. Magazzino, Cosimo & Giolli, Lorenzo, 2021. "The relationship among railway networks, energy consumption, and real added value in Italy. Evidence form ARDL and Wavelet analysis," Research in Transportation Economics, Elsevier, vol. 90(C).
    24. Liddle, Brantley & Lung, Sidney, 2015. "Revisiting energy consumption and GDP causality: Importance of a priori hypothesis testing, disaggregated data, and heterogeneous panels," Applied Energy, Elsevier, vol. 142(C), pages 44-55.
    25. Cheng, Yuanyuan & Yao, Xin, 2021. "Carbon intensity reduction assessment of renewable energy technology innovation in China: A panel data model with cross-section dependence and slope heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    26. Achour, Houda & Belloumi, Mounir, 2016. "Investigating the causal relationship between transport infrastructure, transport energy consumption and economic growth in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 988-998.
    27. Elena Cigu & Daniela Tatiana Agheorghiesei & Anca Florentina Gavriluță (Vatamanu) & Elena Toader, 2018. "Transport Infrastructure Development, Public Performance and Long-Run Economic Growth: A Case Study for the Eu-28 Countries," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    28. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2019. "Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach," Energy Policy, Elsevier, vol. 133(C).
    29. Sanwei He & Shan Yu & Lei Wang, 2021. "The nexus of transport infrastructure and economic output in city-level China: a heterogeneous panel causality analysis," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 66(1), pages 113-135, February.
    30. Liddle, Brantley, 2015. "What Are the Carbon Emissions Elasticities for Income and Population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates," MPRA Paper 61304, University Library of Munich, Germany.
    31. Zhang, Qianxue & Liao, Hua & Hao, Yu, 2018. "Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces," Energy, Elsevier, vol. 150(C), pages 527-543.
    32. Dalia M. Ibrahiem, 2018. "Road energy consumption, economic growth, population and urbanization in Egypt: cointegration and causality analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1053-1066, June.
    33. Li, Hongbo & Liu, Yali & Peng, Kaili, 2018. "Characterizing the relationship between road infrastructure and local economy using structural equation modeling," Transport Policy, Elsevier, vol. 61(C), pages 17-25.
    34. Nadia Benali & Rochdi Feki, 2020. "Evaluation of the relationship between freight transport, energy consumption, economic growth and greenhouse gas emissions: the VECM approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1039-1049, February.
    35. Sikder, Arjita & Inekwe, John & Bhattacharya, Mita, 2019. "Economic output in the era of changing energy-mix for G20 countries: New evidence with trade openness and research and development investment," Applied Energy, Elsevier, vol. 235(C), pages 930-938.

  34. Brantley Liddle, 2013. "The Energy, Economic Growth, Urbanization Nexus Across Development: Evidence from Heterogeneous Panel Estimates Robust to Cross-Sectional Dependence," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).

    Cited by:

    1. Shuyang Chen, 2021. "The Urbanisation Impacts on the Policy Effects of the Carbon Tax in China," Sustainability, MDPI, vol. 13(12), pages 1-11, June.
    2. Smyth, Russell & Narayan, Paresh Kumar, 2015. "Applied econometrics and implications for energy economics research," Energy Economics, Elsevier, vol. 50(C), pages 351-358.
    3. Yabo Zhao & Shaojian Wang, 2015. "The Relationship between Urbanization, Economic Growth and Energy Consumption in China: An Econometric Perspective Analysis," Sustainability, MDPI, vol. 7(5), pages 1-19, May.
    4. Ravetti, Chiara & Cambini, Carlo, 2021. "Energy Use Beyond GDP: A Dynamic Panel Analysis with Different Development Indicators," Working Papers 10-2021, Copenhagen Business School, Department of Economics.
    5. Mounir Belloumi & Atef Saad Alshehry, 2016. "The Impact of Urbanization on Energy Intensity in Saudi Arabia," Sustainability, MDPI, vol. 8(4), pages 1-17, April.
    6. Jamiu Adetola Odugbesan & Husam Rjoub, 2020. "Relationship Among Economic Growth, Energy Consumption, CO2 Emission, and Urbanization: Evidence From MINT Countries," SAGE Open, , vol. 10(2), pages 21582440209, April.
    7. Das, Anupam & McFarlane, Adian, 2019. "Non-linear dynamics of electric power losses, electricity consumption, and GDP in Jamaica," Energy Economics, Elsevier, vol. 84(C).
    8. Huan Zhang, 2016. "Exploring the impact of environmental regulation on economic growth, energy use, and CO2 emissions nexus in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 213-231, October.
    9. Gregori, Tullio & Tiwari, Aviral Kumar, 2020. "Do urbanization, income, and trade affect electricity consumption across Chinese provinces?," Energy Economics, Elsevier, vol. 89(C).
    10. Cheng-Yih Hong & Yu-Shuang Yen & Tsai-Rong Lee, 2019. "The Spillover Effects of Investment, Economic Growth and Electricity Consumption: An Application Mathematical Dynamic Industry-Related Models Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 313-319.
    11. Hari Bansha Dulal, 2019. "Cities in Asia: how are they adapting to climate change?," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 9(1), pages 13-24, March.
    12. Liddle, Brantley & Lung, Sidney, 2013. "Might electricity consumption cause urbanization instead? Evidence from heterogeneous panel long-run causality tests," MPRA Paper 52333, University Library of Munich, Germany.
    13. Liddle, Brantley & Messinis, George, 2013. "Which comes first—urbanization or economic growth? Evidence from heterogeneous panel causality tests," MPRA Paper 53983, University Library of Munich, Germany.
    14. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    15. Sakiru Adebola Solarin, 2017. "The Role of Urbanisation in the Economic Development Process: Evidence from Nigeria," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 11(3), pages 223-255, August.
    16. Zheng, Wei & Walsh, Patrick Paul, 2019. "Economic growth, urbanization and energy consumption — A provincial level analysis of China," Energy Economics, Elsevier, vol. 80(C), pages 153-162.
    17. Liddle, Brantley & Lung, Sidney, 2015. "Revisiting energy consumption and GDP causality: Importance of a priori hypothesis testing, disaggregated data, and heterogeneous panels," Applied Energy, Elsevier, vol. 142(C), pages 44-55.
    18. Wei Zheng & Patrick Paul Walsh, 2018. "Economic growth, urbanization and energy consumption," Working Papers 201817, Geary Institute, University College Dublin.
    19. Liddle, Brantley & Lung, Sidney, 2013. "The long-run causal relationship between transport energy consumption and GDP: Evidence from heterogeneous panel methods robust to cross-sectional dependence," Economics Letters, Elsevier, vol. 121(3), pages 524-527.
    20. Liddle, Brantley, 2015. "What Are the Carbon Emissions Elasticities for Income and Population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates," MPRA Paper 61304, University Library of Munich, Germany.
    21. Sadorsky, Perry, 2014. "The effect of urbanization on CO2 emissions in emerging economies," Energy Economics, Elsevier, vol. 41(C), pages 147-153.
    22. Paresh Narayan & Russell Smyth, 2014. "Applied Econometrics and a Decade of Energy Economics Research," Monash Economics Working Papers 21-14, Monash University, Department of Economics.
    23. Westerlund, Joakim & Thuraisamy, Kannan & Sharma, Susan, 2015. "On the use of panel cointegration tests in energy economics," Energy Economics, Elsevier, vol. 50(C), pages 359-363.
    24. Ahmed, Mumtaz & Riaz, Khalid & Maqbool Khan, Atif & Bibi, Salma, 2015. "Energy consumption–economic growth nexus for Pakistan: Taming the untamed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 890-896.
    25. Sakiru Adebola Solarin & Yuen Yee Yen, 2016. "A global analysis of the impact of research output on economic growth," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 855-874, August.

  35. Liddle, Brantley, 2013. "Urban density and climate change: a STIRPAT analysis using city-level data," Journal of Transport Geography, Elsevier, vol. 28(C), pages 22-29.
    See citations under working paper version above.
  36. Liddle, Brantley, 2012. "Breaks and trends in OECD countries' energy–GDP ratios," Energy Policy, Elsevier, vol. 45(C), pages 502-509.
    See citations under working paper version above.
  37. Liddle, Brantley, 2012. "The importance of energy quality in energy intensive manufacturing: Evidence from panel cointegration and panel FMOLS," Energy Economics, Elsevier, vol. 34(6), pages 1819-1825.

    Cited by:

    1. Smyth, Russell & Narayan, Paresh Kumar, 2015. "Applied econometrics and implications for energy economics research," Energy Economics, Elsevier, vol. 50(C), pages 351-358.
    2. Lau, Lin-Sea & Choong, Chee-Keong & Ng, Cheong-Fatt & Liew, Feng-Mei & Ching, Suet-Ling, 2019. "Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries," Economic Modelling, Elsevier, vol. 77(C), pages 12-20.
    3. Ajayi, V. & Reiner, D., 2018. "European Industrial Energy Intensity: The Role of Innovation 1995-2009," Cambridge Working Papers in Economics 1835, Faculty of Economics, University of Cambridge.
    4. Solarin, Sakiru Adebola & Bello, Mufutau Opeyemi, 2020. "The impact of shale gas development on the U.S economy: Evidence from a quantile autoregressive distributed lag model," Energy, Elsevier, vol. 205(C).
    5. Aldo Salinas & Cristian Ortiz & Pablo Ponce & Javier Changoluisa, 2023. "Does tourism activity reduce the size of the informal economy? Capturing long-term heterogeneous linkages around the world," Tourism Economics, , vol. 29(2), pages 305-347, March.
    6. Rezwanul Hasan Rana & Khorshed Alam & Jeff Gow, 2021. "Financial development and health expenditure nexus: A global perspective," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1050-1063, January.
    7. Hooi Hooi Lean & Russell Smyth, 2013. "Disaggregated Energy Demand by Fuel Type and Economic Growth in Malaysia," Monash Economics Working Papers 43-13, Monash University, Department of Economics.
    8. Husam Rjoub & Jamiu Adetola Odugbesan & Tomiwa Sunday Adebayo & Wing-Keung Wong, 2021. "Sustainability of the Moderating Role of Financial Development in the Determinants of Environmental Degradation: Evidence from Turkey," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    9. Song, ChiUng & Oh, Wankeun, 2015. "Determinants of innovation in energy intensive industry and implications for energy policy," Energy Policy, Elsevier, vol. 81(C), pages 122-130.
    10. Choi, Ki-Hong & Oh, Wankeun, 2014. "Extended Divisia index decomposition of changes in energy intensity: A case of Korean manufacturing industry," Energy Policy, Elsevier, vol. 65(C), pages 275-283.
    11. Boyoon Chang & Sung Jin Kang & Tae Yong Jung, 2019. "Price and Output Elasticities of Energy Demand for Industrial Sectors in OECD Countries," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    12. Ahmed, Khalid & Shahbaz, Muhammad & Kyophilavong, Phouphet, 2016. "Revisiting the emissions-energy-trade nexus: Evidence from the newly industrializing," MPRA Paper 68680, University Library of Munich, Germany, revised 05 Jan 2016.
    13. Noman Arshed & Kamran Hameed & Asma Saher, 2022. "An Empirical Analysis of Supply Chain Competitiveness and Cleaner Production," SAGE Open, , vol. 12(4), pages 21582440221, October.
    14. Nasre Esfahani, Mohammad & Rasoulinezhad, Ehsan, 2015. "Will be there New CO2 Emitters in the Future? Evidence of Long-run Panel Co-integration for N-11 Countries," MPRA Paper 72692, University Library of Munich, Germany.
    15. Espinosa Acuña, Óscar A. & Vaca González, Paola A. & Avila Forero, Raúl A., 2013. "Elasticidades de demanda por electricidad e impactos macroecon_omicos del precio de la energía eléctrica en Colombia || Elasticity of Electricity Demand and Macroeconomics Impacts of Electricity Price," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 16(1), pages 216-249, December.
    16. mallick, Jagannath, 2016. "Investigating the Relationship of Disparity in Income, Private investment and wage rate in Indian states: A Panel Cointegration Approach," MPRA Paper 87736, University Library of Munich, Germany, revised 09 Aug 2017.
    17. Hassan F. Gholipour, 2020. "Urban house prices and investments in small and medium-sized industrial firms: Evidence from provinces of Iran," Urban Studies, Urban Studies Journal Limited, vol. 57(16), pages 3347-3362, December.
    18. Napolitano, Oreste & Foresti, Pasquale & Kounetas, Konstantinos & Spagnolo, Nicola, 2023. "The impact of energy, renewable and CO2 emissions efficiency on countries’ productivity," Energy Economics, Elsevier, vol. 125(C).
    19. Thompson, Henry, 2014. "An energy factor proportions model of the US economy," Energy Economics, Elsevier, vol. 43(C), pages 1-5.
    20. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    21. Yuka Nakajima & Jun Matsushima, 2022. "Japan s Low-growth Economy from the Viewpoint of Energy Quality," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 460-468.
    22. Hassan F. Gholipour & Mohammad Reza Farzanegan, 2018. "Institutions and the effectiveness of expenditures on environmental protection: evidence from Middle Eastern countries," Constitutional Political Economy, Springer, vol. 29(1), pages 20-39, March.
    23. George E. Halkos & Apostolos S. Tsirivis, 2023. "Sustainable Development of the European Electricity Sector: Investigating the Impact of Electricity Price, Market Liberalization and Energy Taxation on RES Deployment," Energies, MDPI, vol. 16(14), pages 1-21, July.
    24. Francois, John Nana & Ahmad, Nazneen & Keinsley, Andrew & Nti-Addae, Akwasi, 2022. "Heterogeneity in the long-run remittance-output relationship: Theory and new evidence," Economic Modelling, Elsevier, vol. 110(C).
    25. Chen, Feng-Wen & Tan, Yulu & Chen, Fengzhang & Wu, Yong-Qiu, 2021. "Enhancing or suppressing: The effect of labor costs on energy intensity in emerging economies," Energy, Elsevier, vol. 214(C).
    26. Giray Gozgor & Sudharshan Reddy Paramati, 2021. "Does Energy Diversification Cause an Economic Slowdown? Evidence from a Newly Constructed Energy Diversification Index," CESifo Working Paper Series 9247, CESifo.
    27. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
    28. Sun, Yunpeng & Guan, Weimin & Cao, Yuning & Bao, Qun, 2022. "Role of green finance policy in renewable energy deployment for carbon neutrality: Evidence from China," Renewable Energy, Elsevier, vol. 197(C), pages 643-653.
    29. Zheng, Wei & Walsh, Patrick Paul, 2019. "Economic growth, urbanization and energy consumption — A provincial level analysis of China," Energy Economics, Elsevier, vol. 80(C), pages 153-162.
    30. Nihal Ahmed & Adnan Ahmed Sheikh & Farhan Mahboob & Muhammad Sibt e Ali & Elżbieta Jasińska & Michał Jasiński & Zbigniew Leonowicz & Alessandro Burgio, 2022. "Energy Diversification: A Friend or Foe to Economic Growth in Nordic Countries? A Novel Energy Diversification Approach," Energies, MDPI, vol. 15(15), pages 1-15, July.
    31. Liddle, Brantley & Lung, Sidney, 2015. "Revisiting energy consumption and GDP causality: Importance of a priori hypothesis testing, disaggregated data, and heterogeneous panels," Applied Energy, Elsevier, vol. 142(C), pages 44-55.
    32. Mohammad Nasre Esfahani & Ehsan Rasoulinezhad, 2016. "Will be there New CO2 Emitters in the Future? Evidence of Longrun Panel Co-integration for N-11 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 463-470.
    33. Rossanto Dwi Haryanto & Yessi Rahmawati & Omar Guillermo Rojas Altamirano & Salsabila Fahar Ahsani & Adrianus Kabubu Hudang & Tri Haryanto, 2022. "An Empirical Investigation between FDI, Tourism, and Trade on CO2 Emission in Asia: Testing Environmental Kuznet Curve and Pollution Haven Hypothesis," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 385-393, July.
    34. Valeria Costantini & Elena Paglialunga, 2014. "Elasticity of substitution in capital-energy relationships: how central is a sector-based panel estimation approach?," SEEDS Working Papers 1314, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2014.
    35. Lin, Boqiang & Du, Kerui, 2015. "Energy and CO2 emissions performance in China's regional economies: Do market-oriented reforms matter?," Energy Policy, Elsevier, vol. 78(C), pages 113-124.
    36. Parker, Steven & Liddle, Brant, 2017. "Analysing energy productivity dynamics in the OECD manufacturing sector," Energy Economics, Elsevier, vol. 67(C), pages 91-97.
    37. Paresh Narayan & Russell Smyth, 2014. "Applied Econometrics and a Decade of Energy Economics Research," Monash Economics Working Papers 21-14, Monash University, Department of Economics.
    38. Mohd Irfan & Muhammad Shahbaz, 2022. "Low-carbon energy strategies and financial development in developing economies: investigating long-run influence of credit and equity market development," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(4), pages 1-26, April.
    39. Eléazar Zerbo, 2017. "Energy consumption and economic growth in Sub-Saharan African countries: Further evidence," Economics Bulletin, AccessEcon, vol. 37(3), pages 1720-1744.
    40. Hock-Han Tee & Hway-Boon Ong, 2016. "Cashless payment and economic growth," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-9, December.
    41. Arora, Tarun, 2015. "Employment-Export Elasticities for the Indian Textile Industry," Working Papers 349, Institute for Social and Economic Change, Bangalore.

  38. Liddle, Brantley, 2010. "Revisiting world energy intensity convergence for regional differences," Applied Energy, Elsevier, vol. 87(10), pages 3218-3225, October.

    Cited by:

    1. Mussini, Mauro, 2020. "Inequality and convergence in energy intensity in the European Union," Applied Energy, Elsevier, vol. 261(C).
    2. Hao, Yu & Liao, Hua & Wei, Yi-Ming, 2015. "Is China’s carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence," Applied Energy, Elsevier, vol. 142(C), pages 229-239.
    3. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    4. Fei, Rilong & Lin, Boqiang, 2017. "The integrated efficiency of inputs–outputs and energy – CO2 emissions performance of China's agricultural sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 668-676.
    5. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Stochastic convergence in per capita fossil fuel consumption in U.S. states," Energy Economics, Elsevier, vol. 62(C), pages 382-395.
    6. Berk, Istemi & Kasman, Adnan & Kılınç, Dilara, 2020. "Towards a common renewable future: The System-GMM approach to assess the convergence in renewable energy consumption of EU countries," Energy Economics, Elsevier, vol. 87(C).
    7. Jimenez Mori, Raul Alberto & Mercado Díaz, Jorge Enrique, 2013. "Energy Intensity: A Decomposition and Counterfactual Exercise for Latin American Countries," IDB Publications (Working Papers) 4594, Inter-American Development Bank.
    8. Zhao, Xueting & Burnett, J. Wesley & Lacombe, Donald J., 2014. "Province-level Convergence of China CO2 Emission Intensity," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169403, Agricultural and Applied Economics Association.
    9. Ajayi, V. & Reiner, D., 2018. "European Industrial Energy Intensity: The Role of Innovation 1995-2009," Cambridge Working Papers in Economics 1835, Faculty of Economics, University of Cambridge.
    10. Yinnan He & Ruxiang Qin & Bangjun Wang, 2023. "On the Club Convergence in China’s Provincial Coal Consumptions: Evidence from a Nonlinear Time-Varying Factor Model," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    11. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2016. "Energy Intensity and Convergence in Swedish Industry: A Combined Econometric and Decomposition Analysis," CERE Working Papers 2016:8, CERE - the Center for Environmental and Resource Economics.
    12. Liddle, Brantley, 2023. "Is timing everything? Assessing the evidence on whether energy/electricity demand elasticities are time-varying," Energy Economics, Elsevier, vol. 124(C).
    13. Honma, Satoshi & Hu, Jin-Li, 2014. "Panel Data Parametric Frontier Technique for Measuring Total-factor Energy Efficiency: Application to Japanese Regions," MPRA Paper 54304, University Library of Munich, Germany.
    14. Richard Tol, 2012. "Maximum Carbon Taxes in the Short Run," Working Paper Series 3312, Department of Economics, University of Sussex Business School.
    15. Mohammadi, Hassan & Ram, Rati, 2017. "Convergence in energy consumption per capita across the US states, 1970–2013: An exploration through selected parametric and non-parametric methods," Energy Economics, Elsevier, vol. 62(C), pages 404-410.
    16. Michał Gostkowski & Tomasz Rokicki & Luiza Ochnio & Grzegorz Koszela & Kamil Wojtczuk & Marcin Ratajczak & Hubert Szczepaniuk & Piotr Bórawski & Aneta Bełdycka-Bórawska, 2021. "Clustering Analysis of Energy Consumption in the Countries of the Visegrad Group," Energies, MDPI, vol. 14(18), pages 1-25, September.
    17. Csereklyei, Zszsanna & Varas, Mar Rubio & Stern, David I., 2014. "Energy and Economic Growth: The Stylized Facts," Working Papers 249502, Australian National University, Centre for Climate Economics & Policy.
    18. Tzen-Ying Ling & Wei-Kai Hung & Chun-Tsu Lin & Michael Lu, 2020. "Dealing with Green Gentrification and Vertical Green-Related Urban Well-Being: A Contextual-Based Design Framework," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    19. Kim, Young Se, 2015. "Electricity consumption and economic development: Are countries converging to a common trend?," Energy Economics, Elsevier, vol. 49(C), pages 192-202.
    20. Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
    21. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    22. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Is there convergence in per capita renewable energy consumption across U.S. States? Evidence from LM and RALS-LM unit root tests with breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 715-728.
    23. Kounetas, Konstantinos Elias, 2018. "Energy consumption and CO2 emissions convergence in European Union member countries. A tonneau des Danaides?," Energy Economics, Elsevier, vol. 69(C), pages 111-127.
    24. Calcagnini, Giorgio & Giombini, Germana & Travaglini, Giuseppe, 2016. "Modelling energy intensity, pollution per capita and productivity in Italy: A structural VAR approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1482-1492.
    25. Fei, Rilong & Lin, Boqiang, 2016. "Energy efficiency and production technology heterogeneity in China's agricultural sector: A meta-frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 25-34.
    26. Nicholas Apergis & Christina Christou, 2016. "Energy productivity convergence: new evidence from club converging," Applied Economics Letters, Taylor & Francis Journals, vol. 23(2), pages 142-145, February.
    27. He, Weijun & Chen, Hao, 2022. "Will China's provincial per capita energy consumption converge to a common level over 1990–2017? Evidence from a club convergence approach," Energy, Elsevier, vol. 249(C).
    28. Martín, Ramón & Gomes, Charmaine & Alleyne, Dillon & Phillips, Willard, 2013. "An assessment of the economic and social impacts of climate change on the energy sector in the Caribbean," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38280, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    29. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2023. "Spatial spillovers and world energy intensity convergence," Energy Economics, Elsevier, vol. 124(C).
    30. Zsuzsanna Csereklyei & David I. Stern, 2014. "Global Energy Use: Decoupling or Convergence?," CCEP Working Papers 1419, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    31. Tolón-Becerra, A. & Lastra-Bravo, X. & Botta, G.F., 2010. "Methodological proposal for territorial distribution of the percentage reduction in gross inland energy consumption according to the EU energy policy strategic goal," Energy Policy, Elsevier, vol. 38(11), pages 7093-7105, November.
    32. Lin, Boqiang & Li, Xuehui, 2011. "The effect of carbon tax on per capita CO2 emissions," Energy Policy, Elsevier, vol. 39(9), pages 5137-5146, September.
    33. Herrerias, M.J., 2012. "World energy intensity convergence revisited: A weighted distribution dynamics approach," Energy Policy, Elsevier, vol. 49(C), pages 383-399.
    34. Tang, Lei & Wang, Xifan & Wang, Xiuli & Shao, Chengcheng & Liu, Shiyu & Tian, Shijun, 2019. "Long-term electricity consumption forecasting based on expert prediction and fuzzy Bayesian theory," Energy, Elsevier, vol. 167(C), pages 1144-1154.
    35. Wu, Jianxin & Wu, Yanrui & Se Cheong, Tsun & Yu, Yanni, 2018. "Distribution dynamics of energy intensity in Chinese cities," Applied Energy, Elsevier, vol. 211(C), pages 875-889.
    36. Bollino, Carlo Andrea & Galeotti, Marzio, 2021. "On the Water-Energy-Food Nexus: Is there Multivariate Convergence?," FEEM Working Papers 309919, Fondazione Eni Enrico Mattei (FEEM).
    37. Heun, Matthew Kuperus & Brockway, Paul E., 2019. "Meeting 2030 primary energy and economic growth goals: Mission impossible?," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    38. Toshiyuki Sueyoshi & Mika Goto, 2023. "Energy Intensity, Energy Efficiency and Economic Growth among OECD Nations from 2000 to 2019," Energies, MDPI, vol. 16(4), pages 1-29, February.
    39. Liddle, Brantley, 2012. "OECD Energy Intensity: Measures, Trends, and Convergence," MPRA Paper 52085, University Library of Munich, Germany.
    40. Lin, Boqiang & Zhu, Junpeng, 2020. "Chinese electricity demand and electricity consumption efficiency: Do the structural changes matter?," Applied Energy, Elsevier, vol. 262(C).
    41. Zhu, Junpeng & Lin, Boqiang, 2020. "Convergence analysis of city-level energy intensity in China," Energy Policy, Elsevier, vol. 139(C).
    42. Choi, Bongseok & Park, Wooyoung & Yu, Bok-Keun, 2017. "Energy intensity and firm growth," Energy Economics, Elsevier, vol. 65(C), pages 399-410.
    43. Ivanovski, Kris & Awaworyi Churchill, Sefa & Smyth, Russell, 2018. "A club convergence analysis of per capita energy consumption across Australian regions and sectors," Energy Economics, Elsevier, vol. 76(C), pages 519-531.
    44. Choi, Bongseok, 2020. "Productivity and misallocation of energy resources: Evidence from Korea’s manufacturing Sector," Resource and Energy Economics, Elsevier, vol. 61(C).
    45. González-Álvarez, María A. & Montañés, Antonio & Olmos, Lorena, 2020. "Towards a sustainable energy scenario? A worldwide analysis," Energy Economics, Elsevier, vol. 87(C).
    46. Shemelis Kebede Hundie & Megersa Debela Daksa, 2019. "Does energy-environmental Kuznets curve hold for Ethiopia? The relationship between energy intensity and economic growth," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-21, December.
    47. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.
    48. Jiang, Lei & Folmer, Henk & Ji, Minhe & Zhou, P., 2018. "Revisiting cross-province energy intensity convergence in China: A spatial panel analysis," Energy Policy, Elsevier, vol. 121(C), pages 252-263.
    49. Fallahi, Firouz, 2017. "Stochastic convergence in per capita energy use in world," Energy Economics, Elsevier, vol. 65(C), pages 228-239.
    50. Parker, Steven & Liddle, Brantley, 2017. "Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries," Energy Economics, Elsevier, vol. 62(C), pages 338-346.
    51. Herrerias, M.J., 2012. "CO2 weighted convergence across the EU-25 countries (1920–2007)," Applied Energy, Elsevier, vol. 92(C), pages 9-16.
    52. Paul J. Burke & Zsuzsanna Csereklyei, 2016. "Understanding the energy-GDP elasticity: A sectoral approach," CAMA Working Papers 2016-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    53. Richard Tol, 2012. "Leviathan carbon taxes in the short run," Climatic Change, Springer, vol. 114(2), pages 409-415, September.
    54. Parker, Steven & Liddle, Brantley, 2016. "Energy efficiency in the manufacturing sector of the OECD: Analysis of price elasticities," Energy Economics, Elsevier, vol. 58(C), pages 38-45.
    55. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Convergence of energy productivity in Australian states and territories: Determinants and forecasts," Energy Economics, Elsevier, vol. 85(C).
    56. Shiwei Yu & Xing Hu & Xuejiao Zhang & Zhenxi Li, 2019. "Convergence of per capita carbon emissions in the Yangtze River Economic Belt, China," Energy & Environment, , vol. 30(5), pages 776-799, August.
    57. Azhgaliyeva, Dina & Liu, Yang & Liddle, Brantley, 2020. "An empirical analysis of energy intensity and the role of policy instruments," Energy Policy, Elsevier, vol. 145(C).
    58. Yu, Bolin & Fang, Debin & Dong, Feng, 2020. "Study on the evolution of thermal power generation and its nexus with economic growth: Evidence from EU regions," Energy, Elsevier, vol. 205(C).
    59. Satoshi Honma & Jin-Li Hu, 2011. "Industry-level Total-factor Energy Efficiency in Developed Countries," Discussion Papers 51, Kyushu Sangyo University, Faculty of Economics.
    60. Herrerias, M.J. & Aller, Carlos & Ordóñez, Javier, 2017. "Residential energy consumption: A convergence analysis across Chinese regions," Energy Economics, Elsevier, vol. 62(C), pages 371-381.
    61. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    62. Zhao, Xueting & Wesley Burnett, J. & Lacombe, Donald J., 2015. "Province-level convergence of China’s carbon dioxide emissions," Applied Energy, Elsevier, vol. 150(C), pages 286-295.
    63. Mundaca, Luis & Markandya, Anil, 2016. "Assessing regional progress towards a ‘Green Energy Economy’," Applied Energy, Elsevier, vol. 179(C), pages 1372-1394.
    64. Wang, Qunwei & Zhao, Zengyao & Zhou, Peng & Zhou, Dequn, 2013. "Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach," Economic Modelling, Elsevier, vol. 35(C), pages 283-289.
    65. Bhattacharya, Mita & Inekwe, John Nkwoma & Sadorsky, Perry & Saha, Anjan, 2018. "Convergence of energy productivity across Indian states and territories," Energy Economics, Elsevier, vol. 74(C), pages 427-440.
    66. Honma, Satoshi & Hu, Jin-Li, 2014. "Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis," Applied Energy, Elsevier, vol. 119(C), pages 67-78.
    67. Goto, Mika & Sueyoshi, Toshiyuki, 2023. "Sustainable development and convergence under energy sector transition in industrial nations: An application of DEA environmental assessment," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    68. Mohammadi, Hassan & Ram, Rati, 2012. "Cross-country convergence in energy and electricity consumption, 1971–2007," Energy Economics, Elsevier, vol. 34(6), pages 1882-1887.
    69. Meng, Ming & Payne, James E. & Lee, Junsoo, 2013. "Convergence in per capita energy use among OECD countries," Energy Economics, Elsevier, vol. 36(C), pages 536-545.
    70. Zeng, Ximei & Zhou, Zhongbao & Gong, Yeming & Liu, Wenbin, 2022. "A data envelopment analysis model integrated with portfolio theory for energy mix adjustment: Evidence in the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    71. Feng Dong & Bolin Yu & Jixiong Zhang, 2018. "What Contributes to Regional Disparities of Energy Consumption in China? Evidence from Quantile Regression-Shapley Decomposition Approach," Sustainability, MDPI, vol. 10(6), pages 1-26, May.
    72. Santiago, Renato & Fuinhas, José Alberto & Marques, António Cardoso, 2020. "An analysis of the energy intensity of Latin American and Caribbean countries: Empirical evidence on the role of public and private capital stock," Energy, Elsevier, vol. 211(C).
    73. Fang, Guochang & Tian, Lixin & Sun, Mei & Fu, Min, 2012. "Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system," Energy, Elsevier, vol. 40(1), pages 291-299.
    74. Le, Thai-Ha & Chang, Youngho & Park, Donghyun, 2017. "Energy demand convergence in APEC: An empirical analysis," Energy Economics, Elsevier, vol. 65(C), pages 32-41.
    75. Chao Bao & Hongjie Wang, 2019. "Trans-Provincial Convergence of per Capita Energy Consumption in Urban China, 1990–2015," Sustainability, MDPI, vol. 11(5), pages 1-15, March.
    76. Parker, Steven & Liddle, Brant, 2017. "Analysing energy productivity dynamics in the OECD manufacturing sector," Energy Economics, Elsevier, vol. 67(C), pages 91-97.
    77. Romero-Ávila, Diego & Omay, Tolga, 2022. "Convergence of per capita energy consumption around the world: New evidence from nonlinear panel unit root tests," Energy Economics, Elsevier, vol. 111(C).
    78. Liu, Tie-Ying & Lee, Chien-Chiang, 2020. "Convergence of the world’s energy use," Resource and Energy Economics, Elsevier, vol. 62(C).
    79. Herrerias, M.J. & Liu, G., 2013. "Electricity intensity across Chinese provinces: New evidence on convergence and threshold effects," Energy Economics, Elsevier, vol. 36(C), pages 268-276.
    80. Bello, Mufutau Opeyemi & Ch'ng, Kean Siang, 2022. "Convergence in energy intensity of GDP: Evidence from West African countries," Energy, Elsevier, vol. 254(PA).
    81. Grafström, Jonas & Jaunky, Vishal, 2017. "Convergence of Incentive Capabilities within the European Union," Ratio Working Papers 301, The Ratio Institute.
    82. Hongze Li & FengYun Li & Xinhua Yu, 2018. "China’s Contributions to Global Green Energy and Low-Carbon Development: Empirical Evidence under the Belt and Road Framework," Energies, MDPI, vol. 11(6), pages 1-32, June.
    83. Grafström, Jonas, 2017. "An Econometric Analysis of Divergence of Renewable Energy Invention Efforts in Europe," Ratio Working Papers 295, The Ratio Institute.
    84. Wesley Burnett, J. & Madariaga, Jessica, 2017. "The convergence of U.S. state-level energy intensity," Energy Economics, Elsevier, vol. 62(C), pages 357-370.
    85. Aramendia, Emmanuel & Brockway, Paul E. & Pizzol, Massimo & Heun, Matthew K., 2021. "Moving from final to useful stage in energy-economy analysis: A critical assessment," Applied Energy, Elsevier, vol. 283(C).
    86. Jianhuan Huang & Yantuan Yu & Chunbo Ma, 2018. "Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 107-130, May.
    87. Blessing Ugwoke & Adedoyin Adeleke & Stefano P. Corgnati & Joshua M. Pearce & Pierluigi Leone, 2020. "Decentralized Renewable Hybrid Mini-Grids for Rural Communities: Culmination of the IREP Framework and Scale up to Urban Communities," Sustainability, MDPI, vol. 12(18), pages 1-26, September.
    88. Wang, Chunhua, 2013. "Changing energy intensity of economies in the world and its decomposition," Energy Economics, Elsevier, vol. 40(C), pages 637-644.
    89. Mundaca, Luis & Román, Rocio & Cansino, José M., 2015. "Towards a Green Energy Economy? A macroeconomic-climate evaluation of Sweden’s CO2 emissions," Applied Energy, Elsevier, vol. 148(C), pages 196-209.
    90. Meng Sun & Yue Zhang & Yaqi Hu & Jiayi Zhang, 2022. "Spatial Convergence of Carbon Productivity: Theoretical Analysis and Chinese Experience," IJERPH, MDPI, vol. 19(8), pages 1-19, April.
    91. Jonas Grafström, 2018. "Divergence of renewable energy invention efforts in Europe: an econometric analysis based on patent counts," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 829-859, October.
    92. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.

  39. Liddle, Brantley, 2009. "Electricity intensity convergence in IEA/OECD countries: Aggregate and sectoral analysis," Energy Policy, Elsevier, vol. 37(4), pages 1470-1478, April.

    Cited by:

    1. Vinod Mishra & Russell Smyth, 2014. "Convergence in energy consumption per capita among ASEAN countries," Monash Economics Working Papers 22-14, Monash University, Department of Economics.
    2. Shi, Xunpeng & Yu, Jian & Cheong, Tsun Se, 2020. "Convergence and distribution dynamics of energy consumption among China's households," Energy Policy, Elsevier, vol. 142(C).
    3. Peter Mulder & Henri L.F. de Groot & Birte Pfeiffer, 2013. "Dynamics and Determinants of Energy Intensity in the Service Sector: A Cross-Country Analysis, 1980–2005," Tinbergen Institute Discussion Papers 13-175/VIII, Tinbergen Institute.
    4. Hao, Yu & Liao, Hua & Wei, Yi-Ming, 2015. "Is China’s carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence," Applied Energy, Elsevier, vol. 142(C), pages 229-239.
    5. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    6. Ruzive, Tafadzwa & Mkhombo, Thando & Mhaka, Simba & Mavikela, Nomahlubi & Phiri, Andrew, 2017. "Electricity intensity and unemployment in South Africa: A quantile regression analysis," MPRA Paper 81717, University Library of Munich, Germany.
    7. Arik Levinson, 2017. "Energy Intensity: Prices, Policy, or Composition in US States," Working Papers gueconwpa~17-17-04, Georgetown University, Department of Economics.
    8. Gutiérrez-Pedrero, María Jesús & Tarancón, Miguel Ángel & del Río, Pablo & Alcántara, Vicent, 2018. "Analysing the drivers of the intensity of electricity consumption of non-residential sectors in Europe," Applied Energy, Elsevier, vol. 211(C), pages 743-754.
    9. He, Yongxiu & Guang, Fengtao & Wang, Meiyan, 2018. "The efficiency of electricity-use of China and its influencing factors," Energy, Elsevier, vol. 163(C), pages 258-269.
    10. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Stochastic convergence in per capita fossil fuel consumption in U.S. states," Energy Economics, Elsevier, vol. 62(C), pages 382-395.
    11. Berk, Istemi & Kasman, Adnan & Kılınç, Dilara, 2020. "Towards a common renewable future: The System-GMM approach to assess the convergence in renewable energy consumption of EU countries," Energy Economics, Elsevier, vol. 87(C).
    12. Mehmet Balcilar & Firat Emir, 2018. "The Dynamics of Energy Intensity Convergence in the EU-28 Countries," Working Papers 15-37, Eastern Mediterranean University, Department of Economics.
    13. Djula Borozan & Mirjana Radman Funaric, 2018. "The Impact of Disaggregated Social Capital on Household Electricity Intensity," South-Eastern Europe Journal of Economics, Association of Economic Universities of South and Eastern Europe and the Black Sea Region, vol. 16(2), pages 189-207.
    14. Hien, P.D., 2019. "Excessive electricity intensity of Vietnam: Evidence from a comparative study of Asia-Pacific countries," Energy Policy, Elsevier, vol. 130(C), pages 409-417.
    15. Mohammadi, Hassan & Ram, Rati, 2017. "Convergence in energy consumption per capita across the US states, 1970–2013: An exploration through selected parametric and non-parametric methods," Energy Economics, Elsevier, vol. 62(C), pages 404-410.
    16. Inglesi-Lotz, R. & Blignaut, J.N., 2012. "Electricity intensities of the OECD and South Africa: A comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4491-4499.
    17. Kim, Young Se, 2015. "Electricity consumption and economic development: Are countries converging to a common trend?," Energy Economics, Elsevier, vol. 49(C), pages 192-202.
    18. Vaona, Andrea, 2013. "The sclerosis of regional electricity intensities in Italy: An aggregate and sectoral analysis," Applied Energy, Elsevier, vol. 104(C), pages 880-889.
    19. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    20. Inglesi-Lotz, Roula, 2018. "Decomposing the South African CO2 emissions within a BRICS countries context: Signalling potential energy rebound effects," Energy, Elsevier, vol. 147(C), pages 648-654.
    21. Le Pen, Yannick & Sévi, Benoît, 2010. "On the non-convergence of energy intensities: Evidence from a pair-wise econometric approach," Ecological Economics, Elsevier, vol. 69(3), pages 641-650, January.
    22. Tarancón, Miguel Angel & del Río, Pablo & Callejas Albiñana, Fernando, 2010. "Assessing the influence of manufacturing sectors on electricity demand. A cross-country input-output approach," Energy Policy, Elsevier, vol. 38(4), pages 1900-1908, April.
    23. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Is there convergence in per capita renewable energy consumption across U.S. States? Evidence from LM and RALS-LM unit root tests with breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 715-728.
    24. Kounetas, Konstantinos Elias, 2018. "Energy consumption and CO2 emissions convergence in European Union member countries. A tonneau des Danaides?," Energy Economics, Elsevier, vol. 69(C), pages 111-127.
    25. Roula Inglesi-Lotz & James Blignaut, 2011. "South Africa's Electricity Consumption: A Sectoral Decomposition Analysis," Working Papers 201105, University of Pretoria, Department of Economics.
    26. Dayong Zhang and David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    27. Moutinho, Victor & Madaleno, Mara & Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "Factors affecting CO2 emissions in top countries on renewable energies: A LMDI decomposition application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 605-622.
    28. Nicholas Apergis & Christina Christou, 2016. "Energy productivity convergence: new evidence from club converging," Applied Economics Letters, Taylor & Francis Journals, vol. 23(2), pages 142-145, February.
    29. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    30. Akram, Vaseem & Rath, Badri Narayan & Sahoo, Pradipta Kumar, 2020. "Stochastic conditional convergence in per capita energy consumption in India," Economic Analysis and Policy, Elsevier, vol. 65(C), pages 224-240.
    31. Wu, Jianxin & Wu, Yanrui & Se Cheong, Tsun & Yu, Yanni, 2018. "Distribution dynamics of energy intensity in Chinese cities," Applied Energy, Elsevier, vol. 211(C), pages 875-889.
    32. Cai, Yifei & Menegaki, Angeliki N., 2019. "Fourier quantile unit root test for the integrational properties of clean energy consumption in emerging economies," Energy Economics, Elsevier, vol. 78(C), pages 324-334.
    33. Howden-Chapman, Philippa & Viggers, Helen & Chapman, Ralph & O’Sullivan, Kimberley & Telfar Barnard, Lucy & Lloyd, Bob, 2012. "Tackling cold housing and fuel poverty in New Zealand: A review of policies, research, and health impacts," Energy Policy, Elsevier, vol. 49(C), pages 134-142.
    34. Liddle, Brantley, 2012. "OECD Energy Intensity: Measures, Trends, and Convergence," MPRA Paper 52085, University Library of Munich, Germany.
    35. Song, Yang & Liu, Dayu & Wang, Qiaoru, 2021. "Identifying characteristic changes in club convergence of China's urban pollution emission: A spatial-temporal feature analysis," Energy Economics, Elsevier, vol. 98(C).
    36. Brantley Liddle & George Messinis, 2018. "Revisiting carbon Kuznets curves with endogenous breaks modeling: evidence of decoupling and saturation (but few inverted-Us) for individual OECD countries," Empirical Economics, Springer, vol. 54(2), pages 783-798, March.
    37. Vo, Duc Hong & Vo, Long Hai & Ho, Chi Minh, 2022. "Regional convergence of nonrenewable energy consumption in Vietnam," Energy Policy, Elsevier, vol. 169(C).
    38. Sebestyénné Szép, Tekla, 2016. "Energetikai konvergencia az Energia 2020 stratégia tükrében. A konvergenciaszámítások alkalmazásának egy alternatív lehetősége [Energy convergence in the light of the Energy 2020 strategy. An alter," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 564-587.
    39. Vishal Chandr Jaunky and Lin Zhang, 2016. "Convergence of Operational Efficiency in Chinas Provincial Power Sectors," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    40. Jianmin You & Xiqiang Chen & Jindao Chen, 2021. "Decomposition of Industrial Electricity Efficiency and Electricity-Saving Potential of Special Economic Zones in China Considering the Heterogeneity of Administrative Hierarchy and Regional Location," Energies, MDPI, vol. 14(17), pages 1-22, September.
    41. Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2015. "Productive energy use and economic growth: Energy, physical and human capital relationships," Energy Economics, Elsevier, vol. 49(C), pages 420-429.
    42. Liu, Yang & Zhong, Sheng, 2021. "Cross-Economy Dynamics in Energy Productivity: Evidence from 47 Economies over the Period 2000–2015," ADBI Working Papers 1215, Asian Development Bank Institute.
    43. Fallahi, Firouz & Voia, Marcel-Cristian, 2015. "Convergence and persistence in per capita energy use among OECD countries: Revisited using confidence intervals," Energy Economics, Elsevier, vol. 52(PA), pages 246-253.
    44. Hao, Yu & Peng, Hui, 2017. "On the convergence in China's provincial per capita energy consumption: New evidence from a spatial econometric analysis," Energy Economics, Elsevier, vol. 68(C), pages 31-43.
    45. Roula Inglesi-Lotz, 2017. "Decomposing the South African COâ‚‚ emissions within a BRICS countries context: The energy rebound hypothesis," Working Papers 690, Economic Research Southern Africa.
    46. Jiang, Lei & Folmer, Henk & Ji, Minhe & Zhou, P., 2018. "Revisiting cross-province energy intensity convergence in China: A spatial panel analysis," Energy Policy, Elsevier, vol. 121(C), pages 252-263.
    47. Mishra, Vinod & Smyth, Russell, 2017. "Conditional convergence in Australia's energy consumption at the sector level," Energy Economics, Elsevier, vol. 62(C), pages 396-403.
    48. Parker, Steven & Liddle, Brantley, 2017. "Economy-wide and manufacturing energy productivity transition paths and club convergence for OECD and non-OECD countries," Energy Economics, Elsevier, vol. 62(C), pages 338-346.
    49. Wang, Na & Fu, Xiaodong & Wang, Shaobin & Yang, Hao & Li, Zhen, 2022. "Convergence characteristics and distribution patterns of residential electricity consumption in China: An urban-rural gap perspective," Energy, Elsevier, vol. 254(PB).
    50. Joseph Nyangon & John Byrne & Job Taminiau, 2017. "An assessment of price convergence between natural gas and solar photovoltaic in the U.S. electricity market," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
    51. Hann-Earl Kim & Yu-Sang Chang & Hee-Jin Kim, 2021. "Dynamic Electricity Intensity Trends in 91 Countries," Sustainability, MDPI, vol. 13(8), pages 1-26, April.
    52. Inglesi-Lotz, R. & Pouris, A., 2012. "Energy efficiency in South Africa: A decomposition exercise," Energy, Elsevier, vol. 42(1), pages 113-120.
    53. Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2014. "Convergence of carbon dioxide performance across Swedish industrial sectors An environmental index approach," CERE Working Papers 2014:10, CERE - the Center for Environmental and Resource Economics.
    54. Bhattacharya, Mita & Inekwe, John Nkwoma & Sadorsky, Perry & Saha, Anjan, 2018. "Convergence of energy productivity across Indian states and territories," Energy Economics, Elsevier, vol. 74(C), pages 427-440.
    55. Mohammadi, Hassan & Ram, Rati, 2012. "Cross-country convergence in energy and electricity consumption, 1971–2007," Energy Economics, Elsevier, vol. 34(6), pages 1882-1887.
    56. Meng, Ming & Payne, James E. & Lee, Junsoo, 2013. "Convergence in per capita energy use among OECD countries," Energy Economics, Elsevier, vol. 36(C), pages 536-545.
    57. Feng Dong & Yifei Hua & Bolin Yu, 2018. "Peak Carbon Emissions in China: Status, Key Factors and Countermeasures—A Literature Review," Sustainability, MDPI, vol. 10(8), pages 1-34, August.
    58. Cheong, Tsun Se & Li, Victor Jing & Shi, Xunpeng, 2019. "Regional disparity and convergence of electricity consumption in China: A distribution dynamics approach," China Economic Review, Elsevier, vol. 58(C).
    59. Feng Dong & Bolin Yu & Jixiong Zhang, 2018. "What Contributes to Regional Disparities of Energy Consumption in China? Evidence from Quantile Regression-Shapley Decomposition Approach," Sustainability, MDPI, vol. 10(6), pages 1-26, May.
    60. Victor Moutinho, 2015. "Is there Convergence and Causality between the Drivers of Energy-Related Carbon Dioxide Emissions among the Portuguese Tourism Industry?," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 828-840.
    61. Le, Thai-Ha & Chang, Youngho & Park, Donghyun, 2017. "Energy demand convergence in APEC: An empirical analysis," Energy Economics, Elsevier, vol. 65(C), pages 32-41.
    62. Parker, Steven & Liddle, Brant, 2017. "Analysing energy productivity dynamics in the OECD manufacturing sector," Energy Economics, Elsevier, vol. 67(C), pages 91-97.
    63. Liddle, Brantley, 2010. "Revisiting world energy intensity convergence for regional differences," Applied Energy, Elsevier, vol. 87(10), pages 3218-3225, October.
    64. Mundaca T., Luis, 2013. "Climate change and energy policy in Chile: Up in smoke?," Energy Policy, Elsevier, vol. 52(C), pages 235-248.
    65. Romero-Ávila, Diego & Omay, Tolga, 2022. "Convergence of per capita energy consumption around the world: New evidence from nonlinear panel unit root tests," Energy Economics, Elsevier, vol. 111(C).
    66. Silvia Domeneghetti & Andrea Vaona, 2015. "Regional aspects of aggregate profitability dynamics in Italy," Working Papers 04/2015, University of Verona, Department of Economics.
    67. Herrerias, M.J. & Liu, G., 2013. "Electricity intensity across Chinese provinces: New evidence on convergence and threshold effects," Energy Economics, Elsevier, vol. 36(C), pages 268-276.
    68. Peter Mulder, 2015. "International Specialization, Structural Change and the Evolution of Manufacturing Energy Intensity in OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    69. Kuriyama, Akihisa & Abe, Naoya, 2018. "Ex-post assessment of the Kyoto Protocol – quantification of CO2 mitigation impact in both Annex B and non-Annex B countries-," Applied Energy, Elsevier, vol. 220(C), pages 286-295.
    70. Bello, Mufutau Opeyemi & Ch'ng, Kean Siang, 2022. "Convergence in energy intensity of GDP: Evidence from West African countries," Energy, Elsevier, vol. 254(PA).
    71. Grafström, Jonas & Jaunky, Vishal, 2017. "Convergence of Incentive Capabilities within the European Union," Ratio Working Papers 301, The Ratio Institute.
    72. Grafström, Jonas, 2017. "An Econometric Analysis of Divergence of Renewable Energy Invention Efforts in Europe," Ratio Working Papers 295, The Ratio Institute.
    73. Navarro Alvarado, Patricia & Hinojosa Palafox, Jesus Fernando & Vazquez Ruiz, Miguel Angel, 2011. "Comparative study of sustainability of the electrical power industry in Mexico and its northern border region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4726-4731.
    74. Yao, Huizong & Zang, Chuanfu, 2021. "The spatiotemporal characteristics of electrical energy supply-demand and the green economy outlook of Guangdong Province, China," Energy, Elsevier, vol. 214(C).
    75. Bashir, Muhammad Farhan & MA, Benjiang & Shahbaz, Muhammad & Shahzad, Umer & Vo, Xuan Vinh, 2021. "Unveiling the heterogeneous impacts of environmental taxes on energy consumption and energy intensity: Empirical evidence from OECD countries," Energy, Elsevier, vol. 226(C).
    76. Yongqing Nan & Qin Li & Jinxiang Yu & Haiya Cai & Qin Zhou, 2020. "Has the emissions intensity of industrial sulphur dioxide converged? New evidence from China’s prefectural cities with dynamic spatial panel models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5337-5369, August.
    77. Jianhuan Huang & Yantuan Yu & Chunbo Ma, 2018. "Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 107-130, May.
    78. An, Hui & Xu, Jianjun & Ma, Xuejiao, 2020. "Does technological progress and industrial structure reduce electricity consumption? Evidence from spatial and heterogeneity analysis," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 206-220.
    79. Wang, Chunhua, 2013. "Changing energy intensity of economies in the world and its decomposition," Energy Economics, Elsevier, vol. 40(C), pages 637-644.
    80. Jonas Grafström, 2018. "Divergence of renewable energy invention efforts in Europe: an econometric analysis based on patent counts," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 829-859, October.
    81. Hao, Yu & Li, Ying & Guo, Yunxia & Chai, Jingxia & Yang, Chuxiao & Wu, Haitao, 2022. "Digitalization and electricity consumption: Does internet development contribute to the reduction in electricity intensity in China?," Energy Policy, Elsevier, vol. 164(C).
    82. Taştan, Hüseyin & Yıldız, Hakan, 2023. "Club convergence analysis of city-level electricity consumption in Turkey," Energy, Elsevier, vol. 265(C).
    83. Perillo, Frederico & Pereira da Silva, Patrícia & Cerqueira, Pedro A., 2022. "Decoupling efficiency from electricity intensity: An empirical assessment in the EU," Energy Policy, Elsevier, vol. 169(C).
    84. Moutinho, Victor & Robaina-Alves, Margarita & Mota, Jorge, 2014. "Carbon dioxide emissions intensity of Portuguese industry and energy sectors: A convergence analysis and econometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 438-449.
    85. Jaunky, Vishal Chandr, 2013. "Divergence in technical efficiency of electric utilities: Evidence from the SAPP," Energy Policy, Elsevier, vol. 62(C), pages 419-430.
    86. Lior Gallo, 2023. "Electricity Intensity Convergence in the OECD Countries," Bank of Israel Working Papers 2023.10, Bank of Israel.

  40. Liddle, Brantley, 2001. "Free trade and the environment-development system," Ecological Economics, Elsevier, vol. 39(1), pages 21-36, October.

    Cited by:

    1. Soumyananda Dinda, 2014. "Climate Change: An Emerging Trade Opportunity in South Asia," South Asian Journal of Macroeconomics and Public Finance, , vol. 3(2), pages 221-239, December.
    2. P. Srinivasan & Inder Siddanth Ravindra, 2015. "Causality among Energy Consumption, CO2 Emission, Economic Growth and Trade," Foreign Trade Review, , vol. 50(3), pages 168-189, August.
    3. Gupta, Manash Ranjan & Barman, Trishita Ray, 2010. "Health, infrastructure, environment and endogenous growth," Journal of Macroeconomics, Elsevier, vol. 32(2), pages 657-673, June.
    4. Evangelos V. Dioikitopoulos & Sugata Ghosh & Eugenia Vella, 2016. "Technological Progress, Time Perception and Environmental Sustainability," Working Papers 2016002, The University of Sheffield, Department of Economics.
    5. Shahbaz, Muhammad & Mallick, Hrushikesh & Kumar, Mantu & Loganathan, Nanthakumar, 2015. "Does Globalization Impede Environmental Quality in India?," MPRA Paper 67285, University Library of Munich, Germany, revised 15 Oct 2015.
    6. Jeffrey A. Frankel & Andrew K. Rose, 2005. "Is Trade Good or Bad for the Environment? Sorting Out the Causality," The Review of Economics and Statistics, MIT Press, vol. 87(1), pages 85-91, February.
    7. Afia Fahmida Daizy & Mobasshir Anjum & Md. Raied Arman & Tanzina Nazia & Nadir Shah, 2021. "Long-run Impact of Globalization, Agriculture, Industrialization and Electricity Consumption on the Environmental Quality of Bangladesh," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 438-453.
    8. Liu, Li-Jing & Creutzig, Felix & Yao, Yun-Fei & Wei, Yi-Ming & Liang, Qiao-Mei, 2020. "Environmental and economic impacts of trade barriers: The example of China–US trade friction," Resource and Energy Economics, Elsevier, vol. 59(C).
    9. Proops, John, 2004. "The growth and distributional consequences of international trade in natural resources and capital goods: a neo-Austrian analysis," Ecological Economics, Elsevier, vol. 48(1), pages 83-91, January.
    10. Jorge Carrera & Pablo de la Vega, 2022. "The Effect of External Debt on Greenhouse Gas Emissions," Papers 2206.01840, arXiv.org, revised Feb 2024.
    11. Ashleigh Keene & Steven C. Deller, 2015. "Evidence of the Environmental Kuznets’ Curve among US Counties and the Impact of Social Capital," International Regional Science Review, , vol. 38(4), pages 358-387, October.
    12. Mongelli, I. & Tassielli, G. & Notarnicola, B., 2006. "Global warming agreements, international trade and energy/carbon embodiments: an input-output approach to the Italian case," Energy Policy, Elsevier, vol. 34(1), pages 88-100, January.
    13. Audi, Marc & Ali, Amjad, 2018. "Determinants of Environmental Degradation under the Perspective of Globalization: A Panel Analysis of Selected MENA Nations," MPRA Paper 85776, University Library of Munich, Germany.
    14. Oyelade, Aduralere Opeyemi & Tijani, Idris Olusegun & Alobaloke, Kafayat Ajoke & Aderounmu, Damilare John, 2022. "Is Trade Good or Bad for the Environment?," African Journal of Economic Review, African Journal of Economic Review, vol. 10(5), December.
    15. Halkos, George, 2018. "Advances in Green Economy and Sustainability: Introduction," MPRA Paper 86534, University Library of Munich, Germany.
    16. Mutascu, Mihai, 2018. "A time-frequency analysis of trade openness and CO2 emissions in France," Energy Policy, Elsevier, vol. 115(C), pages 443-455.
    17. Haider Mahmood, 2020. "CO2 Emissions, Financial Development, Trade, and Income in North America: A Spatial Panel Data Approach," SAGE Open, , vol. 10(4), pages 21582440209, October.
    18. Dinda, Soumyananda, 2006. "Globalization and Environment: Can Pollution Haven Hypothesis alone explain the impact of Globalization on Environment?," MPRA Paper 59111, University Library of Munich, Germany, revised 15 Oct 2006.
    19. Bataka, Hodabalo, 2021. "Globalization and Environmental Pollution in Sub-Saharan Africa," African Journal of Economic Review, African Journal of Economic Review, vol. 9(1), January.
    20. Jeffrey A. Frankel, 2003. "The Environment and Globalization," NBER Working Papers 10090, National Bureau of Economic Research, Inc.
    21. Jean-Louis Combes & Pascale Combes Motel & Somlanaré Romuald Kinda, 2014. "Do Environmental Policies Hurt Trade Performance?," Working Papers halshs-00939249, HAL.
    22. Dinda, Soumyananda, 2018. "Growing Potential Business opportunity for Climate Friendly Goods and Technologies in Asia since 1997," MPRA Paper 93238, University Library of Munich, Germany, revised 2018.
    23. Gupta, Manash Ranjan & Barman, Trishita Ray, 2009. "Fiscal policies, environmental pollution and economic growth," Economic Modelling, Elsevier, vol. 26(5), pages 1018-1028, September.
    24. Justin Tevie & Kristine M. Grimsrud & Robert P. Berrens, 2011. "Testing the Environmental Kuznets Curve Hypothesis for Biodiversity Risk in the US: A Spatial Econometric Approach," Sustainability, MDPI, vol. 3(11), pages 1-18, November.
    25. Ahmed, Khalid & Bhattacharya, Mita & Qazi, Ahmer Qasim & Long, Wei, 2016. "Energy consumption in China and underlying factors in a changing landscape: Empirical evidence since the reform period," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 224-234.
    26. Shahbaz, Muhammad & Ozturk, Ilhan & Afza, Talat & Ali, Amjad, 2013. "Revisiting the environmental Kuznets curve in a global economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 494-502.
    27. Shahbaz, Muhammad & Shahzad, Syed Jawad Hussain & Kumar, Mantu, 2017. "Is Globalization Detrimental to CO2 Emissions in Japan? New Threshold Analysis," MPRA Paper 82413, University Library of Munich, Germany, revised 03 Nov 2017.
    28. Le Hoang Phong & Dang Thi Bach Van & Ho Hoang Gia Bao, 2018. "The Role of Globalization on CO2 Emission in Vietnam Incorporating Industrialization, Urbanization, GDP per Capita and Energy Use," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 275-283.
    29. Shahbaz, Muhammad & Khan, Saleheen & Ali, Amjad & Bhattacharya, Mita, 2015. "The Impact of Globalization on CO2 Emissions in China," MPRA Paper 64450, University Library of Munich, Germany, revised 15 May 2015.
    30. Trishita Ray Barman & Manash Ranjan Gupta, 2010. "Public Expenditure, Environment, and Economic Growth," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 12(6), pages 1109-1134, December.
    31. Polimeni, John M., 2004. "Graduate education in ecological economics," Ecological Economics, Elsevier, vol. 51(3-4), pages 287-293, December.
    32. Dinda, Soumyananda, 2018. "Climate Friendly Goods and Technology Trade: Climate Mitigation Strategy of India," MPRA Paper 93031, University Library of Munich, Germany, revised 2018.
    33. Maxwell Kongkuah & Hongxing Yao & Veli Yilanci, 2022. "The relationship between energy consumption, economic growth, and CO2 emissions in China: the role of urbanisation and international trade," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4684-4708, April.
    34. Khadiga Mohamed El-Aasar & Shaimaa A. Hanafy, 2018. "Investigating the Environmental Kuznets Curve Hypothesis in Egypt: The Role of Renewable Energy and Trade in Mitigating GHGs," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 177-184.
    35. Wang, Jing & Wan, Guanghua & Wang, Chen, 2019. "Participation in GVCs and CO2 emissions," Energy Economics, Elsevier, vol. 84(C).
    36. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    37. Manash Ranjan Gupta & Priya Brata Dutta, 2022. "Taxation, capital accumulation, environment and unemployment in an efficiency wage model," Journal of Economics, Springer, vol. 135(2), pages 151-198, March.
    38. Gupta, Manash Ranjan & Barman, Trishita Ray, 2015. "Environmental Pollution, Informal Sector, Public Expenditure And Economic Growth," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 56(1), pages 73-91, June.
    39. Calbick, K.S. & Gunton, Thomas, 2014. "Differences among OECD countries’ GHG emissions: Causes and policy implications," Energy Policy, Elsevier, vol. 67(C), pages 895-902.
    40. Nedanovski, Pece, 2008. "The Use Of Economic Instruments In Transitional Circumstances As A Tool For Sustainable Environmental Policy: Case Study Of Macedonian Path To Meet Globalization Challenges," 2008 Conference (52nd), February 5-8, 2008, Canberra, Australia 5994, Australian Agricultural and Resource Economics Society.

Chapters

  1. Brantley Liddle & Hillard Huntington, 2021. "Prices, income and energy demand," Chapters, in: Axel Franzen & Sebastian Mader (ed.), Research Handbook on Environmental Sociology, chapter 2, pages 22-40, Edward Elgar Publishing.

    Cited by:

    1. Liddle, Brantley, 2023. "Is timing everything? Assessing the evidence on whether energy/electricity demand elasticities are time-varying," Energy Economics, Elsevier, vol. 124(C).
    2. Liddle, Brantley & Parker, Steven, 2022. "One more for the road: Reconsidering whether OECD gasoline income and price elasticities have changed over time," Energy Economics, Elsevier, vol. 114(C).

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.