IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics0360544221013396.html
   My bibliography  Save this article

Urban and rural differences with regional assessment of household energy consumption in China

Author

Listed:
  • Wang, Shubin
  • Sun, Shaolong
  • Zhao, Erlong
  • Wang, Shouyang

Abstract

This paper explores the crucial factors driving the changes in household energy consumption (HEC) in China during 2005–2017. We propose a decomposition framework based on the Kaya identity and the logarithmic mean Divisia index (LMDI) method to decompose the change in HEC into energy structure effect, energy intensity effect, regional structure effect, per capita consumption effect and population scale effect. We use the model to shed light on the differences of these five factors affecting HEC between urban and rural and among regions while retaining their energy-use characteristics respectively. The results suggest that: (1) Energy intensity and regional structure reduced HEC, whereas population scales, per capita consumption, and energy structure stimulated HEC growth. (2) Rural energy structure contributed larger shares of the increment in HEC. Rural per capita consumption increased generally much more energy consumption than urban counterpart in coastal developed economic regions. Rural population scale curbed the growth of HEC, while urban population scale drove the growth of HEC. (3) Although energy intensity decreased energy consumption at regional level, the differences were found between regions. Moreover, the impacts of regional structure differed significantly between regions, but insignificantly at provincial level. Finally, some policy recommendations will be made based on these suggestive conclusions.

Suggested Citation

  • Wang, Shubin & Sun, Shaolong & Zhao, Erlong & Wang, Shouyang, 2021. "Urban and rural differences with regional assessment of household energy consumption in China," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013396
    DOI: 10.1016/j.energy.2021.121091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013396
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hao, Yu & Wang, Ling'ou & Zhu, Lingyun & Ye, Minjie, 2018. "The dynamic relationship between energy consumption, investment and economic growth in China's rural area: New evidence based on provincial panel data," Energy, Elsevier, vol. 154(C), pages 374-382.
    2. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    3. Heitkoetter, Wilko & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2020. "Regionalised heat demand and power-to-heat capacities in Germany – An open dataset for assessing renewable energy integration," Applied Energy, Elsevier, vol. 259(C).
    4. Xu, X.Y. & Ang, B.W., 2014. "Multilevel index decomposition analysis: Approaches and application," Energy Economics, Elsevier, vol. 44(C), pages 375-382.
    5. De Lauretis, Simona & Ghersi, Frédéric & Cayla, Jean-Michel, 2017. "Energy consumption and activity patterns: An analysis extended to total time and energy use for French households," Applied Energy, Elsevier, vol. 206(C), pages 634-648.
    6. Valenzuela, Carlos & Valencia, Alelhie & White, Steve & Jordan, Jeffrey A. & Cano, Stephanie & Keating, Jerome & Nagorski, John & Potter, Lloyd B., 2014. "An analysis of monthly household energy consumption among single-family residences in Texas, 2010," Energy Policy, Elsevier, vol. 69(C), pages 263-272.
    7. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2016. "Household energy choice and consumption intensity: Empirical evidence from Bhutan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 993-1009.
    8. Meng, Ming & Wang, Lixue & Shang, Wei, 2018. "Decomposition and forecasting analysis of China's household electricity consumption using three-dimensional decomposition and hybrid trend extrapolation models," Energy, Elsevier, vol. 165(PA), pages 143-152.
    9. Nasreen, Samia & Mbarek, Mounir Ben & Atiq-ur-Rehman, Muhammad, 2020. "Long-run causal relationship between economic growth, transport energy consumption and environmental quality in Asian countries: Evidence from heterogeneous panel methods," Energy, Elsevier, vol. 192(C).
    10. Zhang, Zibin & Cai, Wenxin & Feng, Xiangzhao, 2017. "How do urban households in China respond to increasing block pricing in electricity? Evidence from a fuzzy regression discontinuity approach," Energy Policy, Elsevier, vol. 105(C), pages 161-172.
    11. Damette, Olivier & Delacote, Philippe & Lo, Gaye Del, 2018. "Households energy consumption and transition toward cleaner energy sources," Energy Policy, Elsevier, vol. 113(C), pages 751-764.
    12. Xie, Lunyu & Yan, Haosheng & Zhang, Shuhan & Wei, Chu, 2020. "Does urbanization increase residential energy use? Evidence from the Chinese residential energy consumption survey 2012," China Economic Review, Elsevier, vol. 59(C).
    13. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    14. Yang, Yingchun & Liu, Jianghua & Lin, Yingying & Li, Qiongyuan, 2019. "The impact of urbanization on China’s residential energy consumption," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 170-182.
    15. Wang, Qiang & Lin, Jian & Zhou, Kan & Fan, Jie & Kwan, Mei-Po, 2020. "Does urbanization lead to less residential energy consumption? A comparative study of 136 countries," Energy, Elsevier, vol. 202(C).
    16. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    17. Blázquez, Leticia & Boogen, Nina & Filippini, Massimo, 2013. "Residential electricity demand in Spain: New empirical evidence using aggregate data," Energy Economics, Elsevier, vol. 36(C), pages 648-657.
    18. Hu, Wenhao & Ho, Mun S. & Cao, Jing, 2019. "Energy consumption of urban households in China," China Economic Review, Elsevier, vol. 58(C).
    19. Niu, Shuwen & Li, Zhen & Qiu, Xin & Dai, Runqi & Wang, Xiang & Qiang, Wenli & Hong, Zhenguo, 2019. "Measurement of effective energy consumption in China's rural household sector and policy implication," Energy Policy, Elsevier, vol. 128(C), pages 553-564.
    20. Jin, Taeyoung & Kim, Jinsoo, 2019. "A new approach for assessing the macroeconomic growth energy rebound effect," Applied Energy, Elsevier, vol. 239(C), pages 192-200.
    21. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    22. Ang, B.W. & Su, Bin & Wang, H., 2016. "A spatial–temporal decomposition approach to performance assessment in energy and emissions," Energy Economics, Elsevier, vol. 60(C), pages 112-121.
    23. Ehigiamusoe, Kizito Uyi & Lean, Hooi Hooi & Smyth, Russell, 2020. "The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries," Applied Energy, Elsevier, vol. 261(C).
    24. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    25. Galvin, Ray & Sunikka-Blank, Minna, 2018. "Economic Inequality and Household Energy Consumption in High-income Countries: A Challenge for Social Science Based Energy Research," Ecological Economics, Elsevier, vol. 153(C), pages 78-88.
    26. Kaltenegger, Oliver, 2020. "What drives total real unit energy costs globally? A novel LMDI decomposition approach," Applied Energy, Elsevier, vol. 261(C).
    27. Liddle, Brantley & Smyth, Russell & Zhang, Xibin, 2020. "Time-varying income and price elasticities for energy demand: Evidence from a middle-income panel," Energy Economics, Elsevier, vol. 86(C).
    28. Zheng, Wei & Walsh, Patrick Paul, 2019. "Economic growth, urbanization and energy consumption — A provincial level analysis of China," Energy Economics, Elsevier, vol. 80(C), pages 153-162.
    29. Nock, Destenie & Levin, Todd & Baker, Erin, 2020. "Changing the policy paradigm: A benefit maximization approach to electricity planning in developing countries," Applied Energy, Elsevier, vol. 264(C).
    30. Mrówczyńska, Maria & Skiba, Marta & Bazan-Krzywoszańska, Anna & Sztubecka, Małgorzata, 2020. "Household standards and socio-economic aspects as a factor determining energy consumption in the city," Applied Energy, Elsevier, vol. 264(C).
    31. Sharma, Sangeeta V. & Han, Phoumin & Sharma, Vinod K., 2019. "Socio-economic determinants of energy poverty amongst Indian households: A case study of Mumbai," Energy Policy, Elsevier, vol. 132(C), pages 1184-1190.
    32. Iwasaki, Shimpei, 2019. "Using Eco-Home Diagnosis to reduce household energy consumption: A case study on behavioral changes in Fukuoka Prefecture, Japan," Energy Policy, Elsevier, vol. 132(C), pages 893-900.
    33. Liu, Guixian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Cong & Li, Jiaman, 2018. "Natural gas consumption of urban households in China and corresponding influencing factors," Energy Policy, Elsevier, vol. 122(C), pages 17-26.
    34. Ponce, Pablo & Alvarado, Rafael & Ponce, Katerine & Alvarado, Raquel & Granda, Danny & Yaguana, Karen, 2019. "Green returns of labor income and human capital: Empirical evidence of the environmental behavior of households in developing countries," Ecological Economics, Elsevier, vol. 160(C), pages 105-113.
    35. Aydin, Erdal & Brounen, Dirk, 2019. "The impact of policy on residential energy consumption," Energy, Elsevier, vol. 169(C), pages 115-129.
    36. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    37. Li, Lili & Taeihagh, Araz, 2020. "An in-depth analysis of the evolution of the policy mix for the sustainable energy transition in China from 1981 to 2020," Applied Energy, Elsevier, vol. 263(C).
    38. Peng, Liqun & Zhang, Qiang & Yao, Zhiliang & Mauzerall, Denise L. & Kang, Sicong & Du, Zhenyu & Zheng, Yixuan & Xue, Tao & He, Kebin, 2019. "Underreported coal in statistics: A survey-based solid fuel consumption and emission inventory for the rural residential sector in China," Applied Energy, Elsevier, vol. 235(C), pages 1169-1182.
    39. Kahouli, Bassem, 2018. "The causality link between energy electricity consumption, CO2 emissions, R&D stocks and economic growth in Mediterranean countries (MCs)," Energy, Elsevier, vol. 145(C), pages 388-399.
    40. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    41. Chai, Jian & Du, Mengfan & Liang, Ting & Sun, Xiaojie Christine & Yu, Ji & Zhang, Zhe George, 2019. "Coal consumption in China: How to bend down the curve?," Energy Economics, Elsevier, vol. 80(C), pages 38-47.
    42. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.
    43. Yu, Yihua & Guo, Jin, 2016. "Identifying electricity-saving potential in rural China: Empirical evidence from a household survey," Energy Policy, Elsevier, vol. 94(C), pages 1-9.
    44. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    45. Pothen, Frank & Schymura, Michael, 2015. "Bigger cakes with fewer ingredients? A comparison of material use of the world economy," Ecological Economics, Elsevier, vol. 109(C), pages 109-121.
    46. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    47. Borozan, Djula, 2018. "Regional-level household energy consumption determinants: The european perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 347-355.
    48. Li, Peilin & Zhao, Pengjun & Brand, Christian, 2018. "Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach," Applied Energy, Elsevier, vol. 211(C), pages 820-842.
    49. Ma, Wanglin & Zhou, Xiaoshi & Renwick, Alan, 2019. "Impact of off-farm income on household energy expenditures in China: Implications for rural energy transition," Energy Policy, Elsevier, vol. 127(C), pages 248-258.
    50. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    51. Qiu, Huanguang & Yan, Jianbiao & Lei, Zhen & Sun, Dingqiang, 2018. "Rising wages and energy consumption transition in rural China," Energy Policy, Elsevier, vol. 119(C), pages 545-553.
    52. Khanna, Nina Zheng & Guo, Jin & Zheng, Xinye, 2016. "Effects of demand side management on Chinese household electricity consumption: Empirical findings from Chinese household survey," Energy Policy, Elsevier, vol. 95(C), pages 113-125.
    53. Boqiang Lin, & Wang, Miao, 2019. "Possibilities of decoupling for China’s energy consumption from economic growth: A temporal-spatial analysis," Energy, Elsevier, vol. 185(C), pages 951-960.
    54. Zou, Baoling & Luo, Biliang, 2019. "Rural household energy consumption characteristics and determinants in China," Energy, Elsevier, vol. 182(C), pages 814-823.
    55. Li, Mingquan & Shan, Rui & Hernandez, Mauricio & Mallampalli, Varun & Patiño-Echeverri, Dalia, 2019. "Effects of population, urbanization, household size, and income on electric appliance adoption in the Chinese residential sector towards 2050," Applied Energy, Elsevier, vol. 236(C), pages 293-306.
    56. Han, Hongyun & Wu, Shu & Zhang, Zhijian, 2018. "Factors underlying rural household energy transition: A case study of China," Energy Policy, Elsevier, vol. 114(C), pages 234-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Wang & Qiang Yang & Xuenan Wu & Ruichen Wang & Tilei Gao & Yuntong Liu, 2023. "A Study of Trends in Low-Energy Development Patterns in China: A Data-Driven Approach," Sustainability, MDPI, vol. 15(13), pages 1-18, June.
    2. Jingjing Chen & Yangyang Lin & Xiaojun Wang & Bingjing Mao & Lihong Peng, 2022. "Direct and Indirect Carbon Emission from Household Consumption Based on LMDI and SDA Model: A Decomposition and Comparison Analysis," Energies, MDPI, vol. 15(14), pages 1-22, July.
    3. Roth, Lucas & Lowitzsch, Jens & Yildiz, Özgür, 2023. "Which (co-)ownership types in renewables are associated with the willingness to adopt energy-efficient technologies and energy-conscious behaviour? Data from German households," Energy Policy, Elsevier, vol. 180(C).
    4. Pang, Qinghua & Dong, Xianwei & Zhang, Lina & Chiu, Yung-ho, 2023. "Drivers and key pathways of the household energy consumption in the Yangtze river economic belt," Energy, Elsevier, vol. 262(PA).
    5. Ma, Shaoyue & Xu, Xiangbo & Li, Chang & Zhang, Linxiu & Sun, Mingxing, 2021. "Energy consumption inequality decrease with energy consumption increase: Evidence from rural China at micro scale," Energy Policy, Elsevier, vol. 159(C).
    6. Zhang, Yimeng & Wang, Feng & Zhang, Bing, 2023. "The impacts of household structure transitions on household carbon emissions in China," Ecological Economics, Elsevier, vol. 206(C).
    7. Li, Yunwei & Chen, Kui & Ding, Ruixin & Zhang, Jing & Hao, Yu, 2023. "How do photovoltaic poverty alleviation projects relieve household energy poverty? Evidence from China," Energy Economics, Elsevier, vol. 118(C).
    8. Simin Yang & Bart Dewancker & Shuo Chen, 2021. "Study on Passive Heating Involving Firewalls with an Additional Sunlight Room in Rural Residential Buildings," IJERPH, MDPI, vol. 18(21), pages 1-31, October.
    9. Ju, Liwei & Yin, Zhe & Zhou, Qingqing & Li, Qiaochu & Wang, Peng & Tian, Wenxu & Li, Peng & Tan, Zhongfu, 2022. "Nearly-zero carbon optimal operation model and benefit allocation strategy for a novel virtual power plant using carbon capture, power-to-gas, and waste incineration power in rural areas," Applied Energy, Elsevier, vol. 310(C).
    10. Ju, Liwei & Lu, Xiaolong & Yang, Shenbo & Li, Gen & Fan, Wei & Pan, Yushu & Qiao, Huiting, 2022. "A multi-time scale dispatching optimal model for rural biomass waste energy conversion system-based micro-energy grid considering multi-energy demand response," Applied Energy, Elsevier, vol. 327(C).
    11. Ma, Shaoyue & Man, Hecheng & Li, Xiao & Xu, Xiangbo & Sun, Mingxing & Xie, Minghui & Zhang, Linxiu, 2023. "How nonfarm employment drives the households’ energy transition: Evidence from rural China," Energy, Elsevier, vol. 267(C).
    12. Yang, Aoxi & Wang, Yahui, 2023. "Transition of household cooking energy in China since the 1980s," Energy, Elsevier, vol. 270(C).
    13. Wang, You & Gong, Xu, 2022. "Analyzing the difference evolution of provincial energy consumption in China using the functional data analysis method," Energy Economics, Elsevier, vol. 105(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Jiashi & Hou, Xiaochao & Zhang, Lei, 2022. "Policy implications of China's rural household coal governance from the perspective of the spillover effect," Energy, Elsevier, vol. 242(C).
    2. Lei, Mingyu & Cai, Wenjia & Liu, Wenling & Wang, Can, 2022. "The heterogeneity in energy consumption patterns and home appliance purchasing preferences across urban households in China," Energy, Elsevier, vol. 253(C).
    3. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    4. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    5. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    6. Li, Meng & Jin, Tianyu & Liu, Shenglong & Zhou, Shaojie, 2021. "The cost of clean energy transition in rural China: Evidence based on marginal treatment effects," Energy Economics, Elsevier, vol. 97(C).
    7. Han, Jiashi & Zhang, Lei & Li, Yang, 2022. "Spatiotemporal analysis of rural energy transition and upgrading in developing countries: The case of China," Applied Energy, Elsevier, vol. 307(C).
    8. Li, Xingguang, 2023. "Farmland rental market participation and residential energy consumption: Evidence from rural areas in China," Energy, Elsevier, vol. 268(C).
    9. Ma, Shaoyue & Man, Hecheng & Li, Xiao & Xu, Xiangbo & Sun, Mingxing & Xie, Minghui & Zhang, Linxiu, 2023. "How nonfarm employment drives the households’ energy transition: Evidence from rural China," Energy, Elsevier, vol. 267(C).
    10. Zhang, Chenjun & Wu, Yusi & Yu, Yu, 2020. "Spatial decomposition analysis of water intensity in China," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    11. Guang, Fengtao & Wen, Le & Sharp, Basil, 2022. "Energy efficiency improvements and industry transition: An analysis of China's electricity consumption," Energy, Elsevier, vol. 244(PA).
    12. Lin, Boqiang & Wang, Yao, 2020. "Analyzing the elasticity and subsidy to reform the residential electricity tariffs in China," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 189-206.
    13. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    14. Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
    15. Huaquan Zhang & Yashuang Tang & Martinson Ankrah Twumasi & Abbas Ali Chandio & Lili Guo & Ruixin Wan & Shilei Pan & Yun Shen & Ghulam Raza Sargani, 2022. "The Effects of Ecological Public Welfare Jobs on the Usage of Clean Energy by Farmers: Evidence from Tibet Areas—China," Agriculture, MDPI, vol. 12(7), pages 1-16, June.
    16. Lin, Yuancheng & Ma, Linwei & Li, Zheng & Ni, Weidou, 2023. "The carbon reduction potential by improving technical efficiency from energy sources to final services in China: An extended Kaya identity analysis," Energy, Elsevier, vol. 263(PE).
    17. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    18. Boratyński, Jakub, 2021. "Decomposing structural decomposition: The role of changes in individual industry shares," Energy Economics, Elsevier, vol. 103(C).
    19. Lin, Boqiang & Li, Zhensheng, 2021. "Does natural gas pricing reform establish an effective mechanism in China: A policy evaluation perspective," Applied Energy, Elsevier, vol. 282(PA).
    20. Yunlong Zhao & Geng Kong & Chin Hao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "How to Effectively Control Energy Consumption Growth in China’s 29 Provinces: A Paradigm of Multi-Regional Analysis Based on EAALMDI Method," Sustainability, MDPI, vol. 13(3), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.