IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v150y2015icp286-295.html
   My bibliography  Save this article

Province-level convergence of China’s carbon dioxide emissions

Author

Listed:
  • Zhao, Xueting
  • Wesley Burnett, J.
  • Lacombe, Donald J.

Abstract

This study offers a unique contribution to the literature by investigating the convergence of province-level carbon dioxide emission intensities among a panel of 30 provinces in China over the period 1990–2010. We use a novel, spatial dynamic panel data model to evaluate an empirically testable hypothesis of convergence among provinces. Our results suggest that: (1) CO2 emission intensities are converging across provinces in China; (2) the rate of convergence is higher with the dynamic panel data model than the cross-sectional regression models; and, (3) province-level CO2 emission intensities are spatially correlated and the rate of convergence, when controlling for spatial autocorrelation, is higher than with the non-spatial models.

Suggested Citation

  • Zhao, Xueting & Wesley Burnett, J. & Lacombe, Donald J., 2015. "Province-level convergence of China’s carbon dioxide emissions," Applied Energy, Elsevier, vol. 150(C), pages 286-295.
  • Handle: RePEc:eee:appene:v:150:y:2015:i:c:p:286-295
    DOI: 10.1016/j.apenergy.2015.04.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915004705
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferhan Gezici & Geoffrey J. D. Hewings, 2007. "Spatial Analysis of Regional Inequalities in Turkey," European Planning Studies, Taylor & Francis Journals, vol. 15(3), pages 383-403, April.
    2. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    3. Nicolas DEBARSY (CERPE De Namur) & Cem ERTUR & James P. LeSAGE, 2010. "Interpreting Dynamic Space-Time Panel Data Models," LEO Working Papers / DR LEO 800, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    4. Conley, Timothy G & Ligon, Ethan, 2002. "Economic Distance and Cross-Country Spillovers," Journal of Economic Growth, Springer, vol. 7(2), pages 157-187, June.
    5. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    6. Duro, Juan Antonio & Alcántara, Vicent & Padilla, Emilio, 2010. "International inequality in energy intensity levels and the role of production composition and energy efficiency: An analysis of OECD countries," Ecological Economics, Elsevier, vol. 69(12), pages 2468-2474, October.
    7. Richard T. Carson, 2010. "The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 3-23, Winter.
    8. Tan, Zhongfu & Li, Li & Wang, Jianjun & Wang, Jianhui, 2011. "Examining the driving forces for improving China’s CO2 emission intensity using the decomposing method," Applied Energy, Elsevier, vol. 88(12), pages 4496-4504.
    9. Sergio Rey & Brett Montouri, 1999. "US Regional Income Convergence: A Spatial Econometric Perspective," Regional Studies, Taylor & Francis Journals, vol. 33(2), pages 143-156.
    10. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    11. Burnett, J. Wesley & Bergstrom, John C. & Wetzstein, Michael E., 2013. "Carbon dioxide emissions and economic growth in the U.S," Journal of Policy Modeling, Elsevier, vol. 35(6), pages 1014-1028.
    12. Ma, Hengyun & Oxley, Les, 2012. "The emergence and evolution of regional convergence clusters in China's energy markets," Energy Economics, Elsevier, vol. 34(1), pages 82-94.
    13. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    14. Nazrul Islam, 2003. "What have We Learnt from the Convergence Debate?," Journal of Economic Surveys, Wiley Blackwell, vol. 17(3), pages 309-362, July.
    15. Ezcurra, Roberto, 2007. "Distribution dynamics of energy intensities: A cross-country analysis," Energy Policy, Elsevier, vol. 35(10), pages 5254-5259, October.
    16. Herrerias, M.J., 2012. "World energy intensity convergence revisited: A weighted distribution dynamics approach," Energy Policy, Elsevier, vol. 49(C), pages 383-399.
    17. Herrerias, M.J., 2012. "CO2 weighted convergence across the EU-25 countries (1920–2007)," Applied Energy, Elsevier, vol. 92(C), pages 9-16.
    18. Joseph Aldy, 2006. "Per Capita Carbon Dioxide Emissions: Convergence or Divergence?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(4), pages 533-555, April.
    19. González, Domingo & Martínez, Manuel, 2012. "Changes in CO2 emission intensities in the Mexican industry," Energy Policy, Elsevier, vol. 51(C), pages 149-163.
    20. Judson, Ruth A. & Owen, Ann L., 1999. "Estimating dynamic panel data models: a guide for macroeconomists," Economics Letters, Elsevier, vol. 65(1), pages 9-15, October.
    21. Steckel, Jan Christoph & Jakob, Michael & Marschinski, Robert & Luderer, Gunnar, 2011. "From carbonization to decarbonization?--Past trends and future scenarios for China's CO2 emissions," Energy Policy, Elsevier, vol. 39(6), pages 3443-3455, June.
    22. Itkonen, Juha V.A., 2012. "Problems estimating the carbon Kuznets curve," Energy, Elsevier, vol. 39(1), pages 274-280.
    23. Joseph E. Aldy, 2007. "Divergence in State-Level Per Capita Carbon Dioxide Emissions," Land Economics, University of Wisconsin Press, vol. 83(3), pages 353-369.
    24. Liddle, Brantley, 2010. "Revisiting world energy intensity convergence for regional differences," Applied Energy, Elsevier, vol. 87(10), pages 3218-3225, October.
    25. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    26. Michieka, Nyakundi M. & Fletcher, Jerald & Burnett, Wesley, 2013. "An empirical analysis of the role of China’s exports on CO2 emissions," Applied Energy, Elsevier, vol. 104(C), pages 258-267.
    27. Charles I. Jones, 1997. "On the Evolution of the World Income Distribution," Journal of Economic Perspectives, American Economic Association, vol. 11(3), pages 19-36, Summer.
    28. Herrerias, M.J. & Liu, G., 2013. "Electricity intensity across Chinese provinces: New evidence on convergence and threshold effects," Energy Economics, Elsevier, vol. 36(C), pages 268-276.
    29. Zhao, Xueting & Burnett, J. Wesley & Fletcher, Jerald J., 2013. "Spatial Analysis of China Provincial-Level CO2 Emission Intensity," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149006, Agricultural and Applied Economics Association.
    30. Jihai Yu & Lung-Fei Lee, 2012. "Convergence: A Spatial Dynamic Panel Data Approach," Global Journal of Economics (GJE), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 1-36.
    31. Du, Kerui & Lu, Huang & Yu, Kun, 2014. "Sources of the potential CO2 emission reduction in China: A nonparametric metafrontier approach," Applied Energy, Elsevier, vol. 115(C), pages 491-501.
    32. Quah, D., 1990. "Galton'S Fallacy And The Tests Of The Convergence Hypothesis," Working papers 552, Massachusetts Institute of Technology (MIT), Department of Economics.
    33. Zhu, Zhi-Shuang & Liao, Hua & Cao, Huai-Shu & Wang, Lu & Wei, Yi-Ming & Yan, Jinyue, 2014. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," Applied Energy, Elsevier, vol. 113(C), pages 808-815.
    34. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    35. Zhou, P. & Zhang, L. & Zhou, D.Q. & Xia, W.J., 2013. "Modeling economic performance of interprovincial CO2 emission reduction quota trading in China," Applied Energy, Elsevier, vol. 112(C), pages 1518-1528.
    36. Zhang, Shuwei & Bauer, Nico & Luderer, Gunnar & Kriegler, Elmar, 2014. "Role of technologies in energy-related CO2 mitigation in China within a climate-protection world: A scenarios analysis using REMIND," Applied Energy, Elsevier, vol. 115(C), pages 445-455.
    37. Nazrul Islam, 1995. "Growth Empirics: A Panel Data Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(4), pages 1127-1170.
    38. Quah, Danny, 1993. " Galton's Fallacy and Tests of the Convergence Hypothesis," Scandinavian Journal of Economics, Wiley Blackwell, vol. 95(4), pages 427-443, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xueting & Burnett, J. Wesley & Lacombe, Donald J., 2014. "Province-level Convergence of China CO2 Emission Intensity," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169403, Agricultural and Applied Economics Association.
    2. Grafström, Jonas & Jaunky, Vishal, 2017. "Convergence of Incentive Capabilities within the European Union," Ratio Working Papers 301, The Ratio Institute.
    3. Burnett, J. Wesley, 2016. "Club convergence and clustering of U.S. energy-related CO2 emissions," Resource and Energy Economics, Elsevier, vol. 46(C), pages 62-84.
    4. Dayong Zhang and David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    5. Grafström, Jonas, 2017. "An Econometric Analysis of Divergence of Renewable Energy Invention Efforts in Europe," Ratio Working Papers 295, The Ratio Institute.
    6. Kounetas, Konstantinos Elias, 2018. "Energy consumption and CO2 emissions convergence in European Union member countries. A tonneau des Danaides?," Energy Economics, Elsevier, vol. 69(C), pages 111-127.
    7. Wan, Jun & Baylis, Kathy & Mulder, Peter, 2015. "Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries," Energy Economics, Elsevier, vol. 48(C), pages 253-264.
    8. Jianhuan Huang & Yantuan Yu & Chunbo Ma, 2018. "Energy Efficiency Convergence in China: Catch-Up, Lock-In and Regulatory Uniformity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 107-130, May.
    9. Liu, Tie-Ying & Lee, Chien-Chiang, 2020. "Convergence of the world’s energy use," Resource and Energy Economics, Elsevier, vol. 62(C).
    10. Jonas Grafström, 2018. "Divergence of renewable energy invention efforts in Europe: an econometric analysis based on patent counts," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 829-859, October.
    11. Mulder, Peter & de Groot, Henri L.F. & Pfeiffer, Birte, 2014. "Dynamics and determinants of energy intensity in the service sector: A cross-country analysis, 1980–2005," Ecological Economics, Elsevier, vol. 100(C), pages 1-15.
    12. Kim, Young Se, 2015. "Electricity consumption and economic development: Are countries converging to a common trend?," Energy Economics, Elsevier, vol. 49(C), pages 192-202.
    13. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2023. "Spatial spillovers and world energy intensity convergence," Energy Economics, Elsevier, vol. 124(C).
    14. Carlo Andrea Bollino & Marzio Galeotti, 2021. "On the Water-Energy-Food Nexus: Is there Multivariate Convergence?," Working Papers 2021.06, Fondazione Eni Enrico Mattei.
    15. Mohammadi, Hassan & Ram, Rati, 2017. "Convergence in energy consumption per capita across the US states, 1970–2013: An exploration through selected parametric and non-parametric methods," Energy Economics, Elsevier, vol. 62(C), pages 404-410.
    16. Peter Mulder, 2015. "International Specialization, Structural Change and the Evolution of Manufacturing Energy Intensity in OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    17. Mulder, Peter & de Groot, Henri L.F., 2012. "Structural change and convergence of energy intensity across OECD countries, 1970–2005," Energy Economics, Elsevier, vol. 34(6), pages 1910-1921.
    18. Herrerias, M.J., 2012. "World energy intensity convergence revisited: A weighted distribution dynamics approach," Energy Policy, Elsevier, vol. 49(C), pages 383-399.
    19. Peter Mulder & Raymond J.G.M. Florax & Henri L.F. de Groot, 2011. "A Spatial Perspective on Global Energy Productivity Trends," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 2, Edward Elgar Publishing.
    20. Yerken Turganbayev, 2016. "Regional convergence in Kazakhstan," Post-Communist Economies, Taylor & Francis Journals, vol. 28(3), pages 314-334, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:150:y:2015:i:c:p:286-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.