IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v20y2018i5d10.1007_s10668-017-9973-1.html
   My bibliography  Save this article

Regional differences and influencing factors in the CO2 emissions of China’s power industry based on the panel data models considering power-consuming efficiency factor

Author

Listed:
  • Lei Wen

    (North China Electric Power University)

  • Fei Yan

    (North China Electric Power University)

Abstract

With the economic development, China has become the largest CO2 emissions country. China’s power industry CO2 emissions accounted for about 50% of total CO2 emissions. Therefore, exploring major drivers of CO2 emissions is critical to mitigating its CO2 emissions in power industry. Many studies considered the time series model to analyze the national influences factors of CO2 emissions. But this paper focuses on regional differences in CO2 emissions and adopts panel data models to explore the major impact factors of CO2 emissions in the power industry at the regional and provincial perspectives. The results indicate economic growth level plays a dominant role in reducing CO2 emissions. The power-consuming efficiency on the demand side has large potential to mitigate CO2 emissions, but its influences are different in three regions. The impacts of the electric power structure on CO2 emissions decline from the eastern region to the central and western regions. The influence of urbanization and industrialization also has significant regional differences. Therefore, the governments should consider the influencing factors and regional differences and formulate appropriate policies to decrease CO2 emissions in the power industry.

Suggested Citation

  • Lei Wen & Fei Yan, 2018. "Regional differences and influencing factors in the CO2 emissions of China’s power industry based on the panel data models considering power-consuming efficiency factor," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 1987-2007, October.
  • Handle: RePEc:spr:endesu:v:20:y:2018:i:5:d:10.1007_s10668-017-9973-1
    DOI: 10.1007/s10668-017-9973-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-017-9973-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-017-9973-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei Sun & Jingmin Wang & Yadi Ren, 2016. "Research on CO 2 emissions from China's electric power industry based on system dynamics model," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 22(4), pages 423-439.
    2. Ari, Izzet & Aydinalp Koksal, Merih, 2011. "Carbon dioxide emission from the Turkish electricity sector and its mitigation options," Energy Policy, Elsevier, vol. 39(10), pages 6120-6135, October.
    3. Xavier Pautrel, 2015. "Abatement Technology and the Environment–Growth Nexus with Education," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(3), pages 297-318, July.
    4. Chong, ChinHao & Ma, Linwei & Li, Zheng & Ni, Weidou & Song, Shizhong, 2015. "Logarithmic mean Divisia index (LMDI) decomposition of coal consumption in China based on the energy allocation diagram of coal flows," Energy, Elsevier, vol. 85(C), pages 366-378.
    5. Zhang, Ming & Liu, Xiao & Wang, Wenwen & Zhou, Min, 2013. "Decomposition analysis of CO2 emissions from electricity generation in China," Energy Policy, Elsevier, vol. 52(C), pages 159-165.
    6. Porzio, Giacomo Filippo & Fornai, Barbara & Amato, Alessandro & Matarese, Nicola & Vannucci, Marco & Chiappelli, Lisa & Colla, Valentina, 2013. "Reducing the energy consumption and CO2 emissions of energy intensive industries through decision support systems – An example of application to the steel industry," Applied Energy, Elsevier, vol. 112(C), pages 818-833.
    7. Xu, Bin & Lin, Boqiang, 2016. "Differences in regional emissions in China's transport sector: Determinants and reduction strategies," Energy, Elsevier, vol. 95(C), pages 459-470.
    8. Xu, Bin & Lin, Boqiang, 2015. "Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach," Energy, Elsevier, vol. 83(C), pages 486-495.
    9. Kang, Lixia & Liu, Yongzhong, 2015. "Multi-objective optimization on a heat exchanger network retrofit with a heat pump and analysis of CO2 emissions control," Applied Energy, Elsevier, vol. 154(C), pages 696-708.
    10. Moutinho, Victor & Robaina, Margarita, 2016. "Is the share of renewable energy sources determining the CO2 kWh and income relation in electricity generation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 902-914.
    11. Liddle, Brantley & Lung, Sidney, 2015. "Revisiting energy consumption and GDP causality: Importance of a priori hypothesis testing, disaggregated data, and heterogeneous panels," Applied Energy, Elsevier, vol. 142(C), pages 44-55.
    12. Wang, Haichao & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling & Zhou, Zhigang, 2015. "Modelling and optimization of the smart hybrid renewable energy for communities (SHREC)," Renewable Energy, Elsevier, vol. 84(C), pages 114-123.
    13. He, Jie & Wang, Hua, 2012. "Economic structure, development policy and environmental quality: An empirical analysis of environmental Kuznets curves with Chinese municipal data," Ecological Economics, Elsevier, vol. 76(C), pages 49-59.
    14. Karali, Nihan & Xu, Tengfang & Sathaye, Jayant, 2014. "Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 120(C), pages 133-146.
    15. Zhao, Xiaoli & Ma, Qian & Yang, Rui, 2013. "Factors influencing CO2 emissions in China's power industry: Co-integration analysis," Energy Policy, Elsevier, vol. 57(C), pages 89-98.
    16. Kazi Sohag & Rawshan Begum & Sharifah Abdullah, 2015. "Dynamic impact of household consumption on its CO 2 emissions in Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(5), pages 1031-1043, October.
    17. Tan, Zhongfu & Li, Li & Wang, Jianjun & Wang, Jianhui, 2011. "Examining the driving forces for improving China’s CO2 emission intensity using the decomposing method," Applied Energy, Elsevier, vol. 88(12), pages 4496-4504.
    18. Yang, Pingjian & He, Gang & Mao, Guozhu & Liu, Yong & Xu, Mingzhu & Guo, Huaicheng & Liu, Xi, 2013. "Sustainability needs and practices assessment in the building industry of China," Energy Policy, Elsevier, vol. 57(C), pages 212-220.
    19. Md Shahiduzzaman & Allan Layton & Khorshed Alam, 2015. "Decomposition of energy-related CO2 emissions in Australia: Challenges and policy implications," Economic Analysis and Policy, Elsevier, vol. 45(c), pages 100-111.
    20. Xin Tian & Miao Chang & Hiroki Tanikawa & Feng Shi & Hidefumi Imura, 2012. "Regional Disparity in Carbon Dioxide Emissions," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 612-622, August.
    21. Can, Muhlis & Gozgor, Giray, 2016. "Dynamic Relationships among CO2 Emissions, Energy Consumption, Economic Growth, and Economic Complexity in France," MPRA Paper 70373, University Library of Munich, Germany.
    22. Othman, Jamal & Jafari, Yaghoob, 2013. "Identification of the key sectors producing CO2 emissions in Malaysia: application of Input–Output analysis," MPRA Paper 65192, University Library of Munich, Germany, revised 19 Aug 2014.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Jian & Zhong, Minghao & Chen, Shuran, 2022. "Analysis and simulation of BECCS vertical integration model in China based on evolutionary game and system dynamics," Energy, Elsevier, vol. 252(C).
    2. Wang, Juan & Li, Ziming & Wu, Tong & Wu, Siyu & Yin, Tingwei, 2022. "The decoupling analysis of CO2 emissions from power generation in Chinese provincial power sector," Energy, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Bin & Lin, Boqiang, 2016. "Differences in regional emissions in China's transport sector: Determinants and reduction strategies," Energy, Elsevier, vol. 95(C), pages 459-470.
    2. Xu, Bin & Lin, Boqiang, 2016. "Regional differences in the CO2 emissions of China's iron and steel industry: Regional heterogeneity," Energy Policy, Elsevier, vol. 88(C), pages 422-434.
    3. Yang, Lisha & Lin, Boqiang, 2016. "Carbon dioxide-emission in China׳s power industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 258-267.
    4. Qi, Tianyu & Weng, Yuyan & Zhang, Xiliang & He, Jiankun, 2016. "An analysis of the driving factors of energy-related CO2 emission reduction in China from 2005 to 2013," Energy Economics, Elsevier, vol. 60(C), pages 15-22.
    5. Xu, Bin & Lin, Boqiang, 2016. "A quantile regression analysis of China's provincial CO2 emissions: Where does the difference lie?," Energy Policy, Elsevier, vol. 98(C), pages 328-342.
    6. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    7. Atanu Ghoshray & Yurena Mendoza & Mercedes Monfort & Javier Ordoñez, 2018. "Re-assessing causality between energy consumption and economic growth," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-15, November.
    8. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    9. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.
    10. Wu, Tian & Shen, Qu & Xu, Ming & Peng, Tianduo & Ou, Xunmin, 2018. "Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services," Energy, Elsevier, vol. 154(C), pages 298-307.
    11. Wang, Zhiping & Feng, Chao & Chen, Jinyu & Huang, Jianbai, 2017. "The driving forces of material use in China: An index decomposition analysis," Resources Policy, Elsevier, vol. 52(C), pages 336-348.
    12. Chien‐Chiang Lee & Ying Yuan & Huwei Wen, 2022. "Can digital economy alleviate CO2 emissions in the transport sector? Evidence from provincial panel data in China," Natural Resources Forum, Blackwell Publishing, vol. 46(3), pages 289-310, August.
    13. Wei Sun & Ming Meng & Yujun He & Hong Chang, 2016. "CO 2 Emissions from China’s Power Industry: Scenarios and Policies for 13th Five-Year Plan," Energies, MDPI, vol. 9(10), pages 1-16, October.
    14. Joshua Sunday Riti & Deyong Song & Yang Shu & Miriam Kamah & Agya Adi Atabani, 2018. "Does renewable energy ensure environmental quality in favour of economic growth? Empirical evidence from China’s renewable development," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(5), pages 2007-2030, September.
    15. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    16. Li, Li & Hong, Xuefei & Wang, Jun, 2020. "Evaluating the impact of clean energy consumption and factor allocation on China’s air pollution: A spatial econometric approach," Energy, Elsevier, vol. 195(C).
    17. Porzio, Giacomo Filippo & Nastasi, Gianluca & Colla, Valentina & Vannucci, Marco & Branca, Teresa Annunziata, 2014. "Comparison of multi-objective optimization techniques applied to off-gas management within an integrated steelwork," Applied Energy, Elsevier, vol. 136(C), pages 1085-1097.
    18. Wang, Junfeng & He, Shutong & Qiu, Ye & Liu, Nan & Li, Yongjian & Dong, Zhanfeng, 2018. "Investigating driving forces of aggregate carbon intensity of electricity generation in China," Energy Policy, Elsevier, vol. 113(C), pages 249-257.
    19. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    20. Liu, Jiaguo & Li, Sujuan & Ji, Qiang, 2021. "Regional differences and driving factors analysis of carbon emission intensity from transport sector in China," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:20:y:2018:i:5:d:10.1007_s10668-017-9973-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.