IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v45y2015icp838-849.html
   My bibliography  Save this article

An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector

Author

Listed:
  • Ouyang, Xiaoling
  • Lin, Boqiang

Abstract

Both energy consumption and the growth of carbon dioxide (CO2) emissions in China are attributed to the industrial sector. Energy conservation and CO2 emissions reduction in China’s industrial sector is decisive for achieving a low-carbon transition. We analyze the change of energy-related CO2 emissions in China’s industrial sector from 1991 to 2010 based on the Logarithmic Mean Divisia Index (LMDI) method. Results indicate that industrial activity is the major factor that contributes to the increase of industrial CO2 emissions while energy intensity is the major contributor to the decrease of CO2 emissions. Industry size shows a varying trend interchanging intervals of growth along the study period. Moreover, both energy mix and carbon intensity of energy use have negative effects on the increase of CO2 emissions. The cointegration method is adopted to further explore determinants of CO2 emissions in China’s industrial sector. Results show that there exists a long-run relationship between industrial CO2 emissions and affecting factors such as CO2 emissions per unit of energy consumption, industrial value added, labor productivity and fossil fuel consumption. China’s industrial CO2 emissions are mainly attributed to the coal-dominated energy structure. Policy suggestions are thus provided to reduce industrial CO2 emissions in China.

Suggested Citation

  • Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
  • Handle: RePEc:eee:rensus:v:45:y:2015:i:c:p:838-849
    DOI: 10.1016/j.rser.2015.02.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115001185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.02.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Ching-Chih, 2010. "A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China," Applied Energy, Elsevier, vol. 87(11), pages 3533-3537, November.
    2. Jalil, Abdul & Feridun, Mete, 2011. "The impact of growth, energy and financial development on the environment in China: A cointegration analysis," Energy Economics, Elsevier, vol. 33(2), pages 284-291, March.
    3. Napp, T.A. & Gambhir, A. & Hills, T.P. & Florin, N. & Fennell, P.S, 2014. "A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 616-640.
    4. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2011. "CO2 emissions, GDP and energy intensity: A multivariate cointegration and causality analysis for Greece, 1977-2007," Applied Energy, Elsevier, vol. 88(4), pages 1377-1385, April.
    5. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.
    6. Tony Irawan & Djoni Hartono & Noer Azam Achsani, 2010. "An Analysis of Energy Intensity in Indonesian Manufacturing," Working Papers in Economics and Development Studies (WoPEDS) 201007, Department of Economics, Padjadjaran University, revised Aug 2010.
    7. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2013. "Indicators for sustainable energy development: A multivariate cointegration and causality analysis from Tunisian road transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 34-43.
    8. Saboori, Behnaz & Sulaiman, Jamalludin, 2013. "CO2 emissions, energy consumption and economic growth in Association of Southeast Asian Nations (ASEAN) countries: A cointegration approach," Energy, Elsevier, vol. 55(C), pages 813-822.
    9. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    10. Lin, Boqiang & Jiang, Zhujun, 2011. "Estimates of energy subsidies in China and impact of energy subsidy reform," Energy Economics, Elsevier, vol. 33(2), pages 273-283, March.
    11. Ang, B.W., 1995. "Decomposition methodology in industrial energy demand analysis," Energy, Elsevier, vol. 20(11), pages 1081-1095.
    12. Ziramba, Emmanuel, 2010. "Price and income elasticities of crude oil import demand in South Africa: A cointegration analysis," Energy Policy, Elsevier, vol. 38(12), pages 7844-7849, December.
    13. Fei, Li & Dong, Suocheng & Xue, Li & Liang, Quanxi & Yang, Wangzhou, 2011. "Energy consumption-economic growth relationship and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 39(2), pages 568-574, February.
    14. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
    15. Shahiduzzaman, Md & Alam, Khorshed, 2012. "Cointegration and causal relationships between energy consumption and output: Assessing the evidence from Australia," Energy Economics, Elsevier, vol. 34(6), pages 2182-2188.
    16. Tiwari, Aviral Kumar & Shahbaz, Muhammad & Adnan Hye, Qazi Muhammad, 2013. "The environmental Kuznets curve and the role of coal consumption in India: Cointegration and causality analysis in an open economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 519-527.
    17. Tan, Zhongfu & Li, Li & Wang, Jianjun & Wang, Jianhui, 2011. "Examining the driving forces for improving China’s CO2 emission intensity using the decomposing method," Applied Energy, Elsevier, vol. 88(12), pages 4496-4504.
    18. Lin, Boqiang & Li, Jianglong, 2014. "The rebound effect for heavy industry: Empirical evidence from China," Energy Policy, Elsevier, vol. 74(C), pages 589-599.
    19. Ang, B. W. & Lee, P. W., 1996. "Decomposition of industrial energy consumption: The energy coefficient approach," Energy Economics, Elsevier, vol. 18(1-2), pages 129-143, April.
    20. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    21. Cong, Rong-Gang & Wei, Yi-Ming, 2010. "Potential impact of (CET) carbon emissions trading on China’s power sector: A perspective from different allowance allocation options," Energy, Elsevier, vol. 35(9), pages 3921-3931.
    22. Ang, BW, 1994. "Decomposition of industrial energy consumption : The energy intensity approach," Energy Economics, Elsevier, vol. 16(3), pages 163-174, July.
    23. Lin, Boqiang & Moubarak, Mohamed, 2013. "Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 389-396.
    24. Narayan, Paresh Kumar & Narayan, Seema, 2010. "Carbon dioxide emissions and economic growth: Panel data evidence from developing countries," Energy Policy, Elsevier, vol. 38(1), pages 661-666, January.
    25. Kim, Yeonbae & Worrell, Ernst, 2002. "International comparison of CO2 emission trends in the iron and steel industry," Energy Policy, Elsevier, vol. 30(10), pages 827-838, August.
    26. Tian, Yihui & Zhu, Qinghua & Geng, Yong, 2013. "An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry," Energy Policy, Elsevier, vol. 56(C), pages 352-361.
    27. Cong, Rong-Gang, 2013. "An optimization model for renewable energy generation and its application in China: A perspective of maximum utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 94-103.
    28. Fan, Ying & Liu, Lan-Cui & Wu, Gang & Tsai, Hsien-Tang & Wei, Yi-Ming, 2007. "Changes in carbon intensity in China: Empirical findings from 1980-2003," Ecological Economics, Elsevier, vol. 62(3-4), pages 683-691, May.
    29. Al-mulali, Usama & Fereidouni, Hassan Gholipour & Lee, Janice Y.M. & Sab, Che Normee Binti Che, 2013. "Exploring the relationship between urbanization, energy consumption, and CO2 emission in MENA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 107-112.
    30. MacKinnon, James G & Haug, Alfred A & Michelis, Leo, 1999. "Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 563-577, Sept.-Oct.
    31. Hasanbeigi, Ali & Price, Lynn, 2012. "A review of energy use and energy efficiency technologies for the textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3648-3665.
    32. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2005. "Driving forces behind the stagnancy of China's energy-related CO2 emissions from 1996 to 1999: the relative importance of structural change, intensity change and scale change," Energy Policy, Elsevier, vol. 33(3), pages 319-335, February.
    33. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    34. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
    35. Osterwald-Lenum, Michael, 1992. "A Note with Quantiles of the Asymptotic Distribution of the Maximum Likelihood Cointegration Rank Test Statistics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 461-472, August.
    36. Zhang, ZhongXiang, 2003. "Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change," Energy Economics, Elsevier, vol. 25(6), pages 625-638, November.
    37. Steenhof, Paul A., 2007. "Decomposition for emission baseline setting in China's electricity sector," Energy Policy, Elsevier, vol. 35(1), pages 280-294, January.
    38. Zhao, Xiaoli & Ma, Qian & Yang, Rui, 2013. "Factors influencing CO2 emissions in China's power industry: Co-integration analysis," Energy Policy, Elsevier, vol. 57(C), pages 89-98.
    39. Cong, Rong-Gang & Shen, Shaochuan, 2014. "How to Develop Renewable Power in China? A Cost-Effective Perspective," MPRA Paper 112209, University Library of Munich, Germany.
    40. Donglan, Zha & Dequn, Zhou & Peng, Zhou, 2010. "Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis," Energy Policy, Elsevier, vol. 38(7), pages 3377-3383, July.
    41. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, Decembrie.
    42. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    43. Xu, Jin-Hua & Fleiter, Tobias & Eichhammer, Wolfgang & Fan, Ying, 2012. "Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis," Energy Policy, Elsevier, vol. 50(C), pages 821-832.
    44. Cong, Rong-Gang & Wei, Yi-Ming & Jiao, Jian-Lin & Fan, Ying, 2008. "Relationships between oil price shocks and stock market: An empirical analysis from China," Energy Policy, Elsevier, vol. 36(9), pages 3544-3553, September.
    45. Jahangir Alam, Mohammad & Ara Begum, Ismat & Buysse, Jeroen & Van Huylenbroeck, Guido, 2012. "Energy consumption, carbon emissions and economic growth nexus in Bangladesh: Cointegration and dynamic causality analysis," Energy Policy, Elsevier, vol. 45(C), pages 217-225.
    46. Lu, Shyi-Min & Lu, Ching & Tseng, Kuo-Tung & Chen, Falin & Chen, Chen-Liang, 2013. "Energy-saving potential of the industrial sector of Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 674-683.
    47. Cong, Rong-Gang & Wei, Yi-Ming, 2012. "Experimental comparison of impact of auction format on carbon allowance market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4148-4156.
    48. Liu, Lan-Cui & Fan, Ying & Wu, Gang & Wei, Yi-Ming, 2007. "Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis," Energy Policy, Elsevier, vol. 35(11), pages 5892-5900, November.
    49. Zhang, Ming & Mu, Hailin & Ning, Yadong, 2009. "Accounting for energy-related CO2 emission in China, 1991-2006," Energy Policy, Elsevier, vol. 37(3), pages 767-773, March.
    50. Shahbaz, Muhammad & Lean, Hooi Hooi & Shabbir, Muhammad Shahbaz, 2012. "Environmental Kuznets Curve hypothesis in Pakistan: Cointegration and Granger causality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2947-2953.
    51. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    52. Jalil, Abdul & Mahmud, Syed F., 2009. "Environment Kuznets curve for CO2 emissions: A cointegration analysis for China," Energy Policy, Elsevier, vol. 37(12), pages 5167-5172, December.
    53. Hasanbeigi, Ali & Price, Lynn & Lin, Elina, 2012. "Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6220-6238.
    54. Saboori, Behnaz & Sulaiman, Jamalludin & Mohd, Saidatulakmal, 2012. "Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve," Energy Policy, Elsevier, vol. 51(C), pages 184-191.
    55. Ang, B. W. & Lee, S. Y., 1994. "Decomposition of industrial energy consumption : Some methodological and application issues," Energy Economics, Elsevier, vol. 16(2), pages 83-92, April.
    56. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Electricity demand and conservation potential in the Chinese nonmetallic mineral products industry," Energy Policy, Elsevier, vol. 68(C), pages 243-253.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
    2. Shahbaz, Muhammad & Hye, Qazi Muhammad Adnan & Tiwari, Aviral Kumar & Leitão, Nuno Carlos, 2013. "Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 109-121.
    3. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2019. "CO2 Emissions and GDP: Evidence from China," CESifo Working Paper Series 7881, CESifo.
    4. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    5. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    6. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    7. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2021. "Analysing the relationship between CO2 emissions and GDP in China: a fractional integration and cointegration approach," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-16, December.
    8. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
    9. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    10. Gozgor, Giray & Can, Muhlis, 2016. "Does Export Product Quality Matter for CO2 Emissions? Evidence from China," MPRA Paper 71873, University Library of Munich, Germany.
    11. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    12. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    13. Shahbaz, Muhammad & Salah Uddin, Gazi & Ur Rehman, Ijaz & Imran, Kashif, 2014. "Industrialization, electricity consumption and CO2 emissions in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 575-586.
    14. Bekhet, Hussain Ali & Othman, Nor Salwati, 2018. "The role of renewable energy to validate dynamic interaction between CO2 emissions and GDP toward sustainable development in Malaysia," Energy Economics, Elsevier, vol. 72(C), pages 47-61.
    15. Muhammad, Shahbaz, 2012. "Multivariate granger causality between CO2 Emissions, energy intensity, financial development and economic growth: evidence from Portugal," MPRA Paper 37774, University Library of Munich, Germany, revised 31 Mar 2012.
    16. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.
    17. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
    18. Ertugrul, Hasan Murat & Çetin, Murat & Şeker, Fahri & Dogan, Eyüp, 2015. "The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries," MPRA Paper 97539, University Library of Munich, Germany, revised 10 Mar 2016.
    19. Sofien Tiba & Mohamed Frikha, 2020. "EKC and Macroeconomics Aspects of Well-being: a Critical Vision for a Sustainable Future," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 11(3), pages 1171-1197, September.
    20. Liu, Gengyuan & Hao, Yan & Zhou, Yun & Yang, Zhifeng & Zhang, Yan & Su, Meirong, 2016. "China's low-carbon industrial transformation assessment based on Logarithmic Mean Divisia Index model," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 156-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:45:y:2015:i:c:p:838-849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.