IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v60y2016icp15-22.html
   My bibliography  Save this article

An analysis of the driving factors of energy-related CO2 emission reduction in China from 2005 to 2013

Author

Listed:
  • Qi, Tianyu
  • Weng, Yuyan
  • Zhang, Xiliang
  • He, Jiankun

Abstract

The identification of the driving factors of China's energy-related emissions in the past years is very important to inform the policy design for China's future emission mitigations. Although this topic has been widely discussed in the literature, this paper provides the most recent overall estimation of the emission mitigation factors from both the production side and the consumption side taking into account China's recent energy and economic transformation. This study adopts China's most recent revised energy and economic data from 2005 to 2013 and analyzes it with a logarithmic mean Divisia index (LMDI) decomposition model. We find that the primary emission mitigation contributor is the improvement of energy productivity in the industry sectors, which contributes 72% of the total reduction; household contributes 8.3%. The economic transitions in 2013 are still in an early stage, and the expected economic structure effect is moderately on emission reduction. In the future, China needs to improve the energy productivity in production sectors further by both enforcing energy conservation and promoting industry upgrading. Economic restructure will play a more important role in future emission reduction.

Suggested Citation

  • Qi, Tianyu & Weng, Yuyan & Zhang, Xiliang & He, Jiankun, 2016. "An analysis of the driving factors of energy-related CO2 emission reduction in China from 2005 to 2013," Energy Economics, Elsevier, vol. 60(C), pages 15-22.
  • Handle: RePEc:eee:eneeco:v:60:y:2016:i:c:p:15-22
    DOI: 10.1016/j.eneco.2016.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988316302523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2016.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W. & Pandiyan, G., 1997. "Decomposition of energy-induced CO2 emissions in manufacturing," Energy Economics, Elsevier, vol. 19(3), pages 363-374, July.
    2. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    3. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
    4. Choi, Ki-Hong & Ang, B. W., 2001. "A time-series analysis of energy-related carbon emissions in Korea," Energy Policy, Elsevier, vol. 29(13), pages 1155-1161, November.
    5. Tan, Zhongfu & Li, Li & Wang, Jianjun & Wang, Jianhui, 2011. "Examining the driving forces for improving China’s CO2 emission intensity using the decomposing method," Applied Energy, Elsevier, vol. 88(12), pages 4496-4504.
    6. Xu, Xianshuo & Zhao, Tao & Liu, Nan & Kang, Jidong, 2014. "Changes of energy-related GHG emissions in China: An empirical analysis from sectoral perspective," Applied Energy, Elsevier, vol. 132(C), pages 298-307.
    7. Zhang, Ming & Liu, Xiao & Wang, Wenwen & Zhou, Min, 2013. "Decomposition analysis of CO2 emissions from electricity generation in China," Energy Policy, Elsevier, vol. 52(C), pages 159-165.
    8. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    9. Md Shahiduzzaman & Allan Layton & Khorshed Alam, 2015. "Decomposition of energy-related CO2 emissions in Australia: Challenges and policy implications," Economic Analysis and Policy, Elsevier, vol. 45(c), pages 100-111.
    10. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    11. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    12. Yang, Chi-Jen & Zhou, Yipei & Jackson, Robert B., 2014. "China's fuel gas sector: History, current status, and future prospects," Utilities Policy, Elsevier, vol. 28(C), pages 12-21.
    13. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    14. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2012. "The impacts of China’s household consumption expenditure patterns on energy demand and carbon emissions towards 2050," Energy Policy, Elsevier, vol. 50(C), pages 736-750.
    15. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    16. Xu, Jin-Hua & Fan, Ying & Yu, Song-Min, 2014. "Energy conservation and CO2 emission reduction in China's 11th Five-Year Plan: A performance evaluation," Energy Economics, Elsevier, vol. 46(C), pages 348-359.
    17. Shen, Jianfei & Luo, Chen, 2015. "Overall review of renewable energy subsidy policies in China – Contradictions of intentions and effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1478-1488.
    18. Wei Li & Shuang Sun & Hao Li, 2015. "Decomposing the decoupling relationship between energy-related CO 2 emissions and economic growth in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 977-997, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Aijun & Zhou, Dinglin & Chen, Guoshi & Liu, Yuhao & Long, Yan, 2020. "Multi-region comparisons of energy-related CO2 emissions and production water use during energy development in northwestern China," Renewable Energy, Elsevier, vol. 153(C), pages 940-961.
    2. Wang, Xianzhu & Huang, He & Hong, Jingke & Ni, Danfei & He, Rongxiao, 2020. "A spatiotemporal investigation of energy-driven factors in China: A region-based structural decomposition analysis," Energy, Elsevier, vol. 207(C).
    3. Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
    4. Li-Jing Liu & Qiao-Mei Liang & Felix Creutzig & Nan Cheng & Lan-Cui Liu, 2021. "Electricity end-use and construction activity are key leverage points for co-controlling greenhouse gases and local pollution in China," Climatic Change, Springer, vol. 167(1), pages 1-22, July.
    5. Song, Yi & Huang, Jian-Bai & Feng, Chao, 2018. "Decomposition of energy-related CO2 emissions in China's iron and steel industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 59(C), pages 103-116.
    6. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    7. Abudureheman, Maliyamu & Jiang, Qingzhe & Dong, Xiucheng & Dong, Cong, 2022. "Spatial effects of dynamic comprehensive energy efficiency on CO2 reduction in China," Energy Policy, Elsevier, vol. 166(C).
    8. Liu, Chang & Lin, Boqiang, 2018. "Analysis of the changes in the scale of natural gas subsidy in China and its decomposition factors," Energy Economics, Elsevier, vol. 70(C), pages 37-44.
    9. Xiao Tang & Weiwei Chen & Tian Wu, 2018. "Do Authoritarian Governments Respond to Public Opinion on the Environment? Evidence from China," IJERPH, MDPI, vol. 15(2), pages 1-15, February.
    10. Peng Zhang & Maosheng Duan & Guangzhi Yin, 2018. "The Periodic Characteristics of China’s Economic Carbon Intensity Change and the Impacts of Economic Transformation," Energies, MDPI, vol. 11(4), pages 1-21, April.
    11. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    12. Boffino, Luigi & Conejo, Antonio J. & Sioshansi, Ramteen & Oggioni, Giorgia, 2019. "A two-stage stochastic optimization planning framework to decarbonize deeply electric power systems," Energy Economics, Elsevier, vol. 84(C).
    13. Sun, Xiaoqi & Liu, Xiaojia, 2020. "Decomposition analysis of debt’s impact on China’s energy consumption," Energy Policy, Elsevier, vol. 146(C).
    14. Yan, Zheming & Zhou, Zicheng & Du, Kerui, 2023. "How does environmental regulatory stringency affect energy consumption? Evidence from Chinese firms," Energy Economics, Elsevier, vol. 118(C).
    15. Agnolucci, Paolo & Arvanitopoulos, Theodoros, 2019. "Industrial characteristics and air emissions: Long-term determinants in the UK manufacturing sector," Energy Economics, Elsevier, vol. 78(C), pages 546-566.
    16. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
    17. Alessia Spada & Mariantonietta Fiore & Umberto Monarca & Nicola Faccilongo, 2019. "R&D Expenditure for New Technology in Livestock Farming: Impact on GHG Reduction in Developing Countries," Sustainability, MDPI, vol. 11(24), pages 1-12, December.
    18. Yousaf Raza, Muhammad & Lin, Boqiang, 2022. "Natural gas consumption, energy efficiency and low carbon transition in Pakistan," Energy, Elsevier, vol. 240(C).
    19. Xin Li & Xiandan Cui & Minxi Wang, 2017. "Analysis of China’s Carbon Emissions Base on Carbon Flow in Four Main Sectors: 2000–2013," Sustainability, MDPI, vol. 9(4), pages 1-13, April.
    20. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    21. Wei Chen & Qian Zhang & Ziyan Gao & Yong Geng & Yu Cheng & Xu Tian, 2023. "Exploring the drivers of energy-related CO2 emissions in western China: a case study of Haixi," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11957-11971, October.
    22. Keles, Dogan & Yilmaz, Hasan Ümitcan, 2020. "Decarbonisation through coal phase-out in Germany and Europe — Impact on Emissions, electricity prices and power production," Energy Policy, Elsevier, vol. 141(C).
    23. Yebing Fang & Limao Wang & Zhoupeng Ren & Yan Yang & Chufu Mou & Qiushi Qu, 2017. "Spatial Heterogeneity of Energy-Related CO 2 Emission Growth Rates around the World and Their Determinants during 1990–2014," Energies, MDPI, vol. 10(3), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    2. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    3. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    4. Peng Zhang & Maosheng Duan & Guangzhi Yin, 2018. "The Periodic Characteristics of China’s Economic Carbon Intensity Change and the Impacts of Economic Transformation," Energies, MDPI, vol. 11(4), pages 1-21, April.
    5. Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
    6. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    7. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    8. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
    9. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    10. Huang, Jian-Bai & Luo, Yu-Mei & Feng, Chao, 2019. "An overview of carbon dioxide emissions from China's ferrous metal industry: 1991-2030," Resources Policy, Elsevier, vol. 62(C), pages 541-549.
    11. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    12. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    13. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    14. Goh, Tian & Ang, B.W., 2018. "Quantifying CO2 emission reductions from renewables and nuclear energy – Some paradoxes," Energy Policy, Elsevier, vol. 113(C), pages 651-662.
    15. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    16. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    17. Jana, Sebak Kumar & Lise, Wietze, 2023. "Carbon Emissions from Energy Use in India: Decomposition Analysis," MPRA Paper 117245, University Library of Munich, Germany.
    18. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
    19. Wang, Qunwei & Hang, Ye & Zhou, P. & Wang, Yizhong, 2016. "Decoupling and attribution analysis of industrial carbon emissions in Taiwan," Energy, Elsevier, vol. 113(C), pages 728-738.
    20. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.

    More about this item

    Keywords

    Logarithmic mean Divisia index (LMDI) model; Energy-related CO2 emission; Index decomposition analysis; CO2 reduction;
    All these keywords.

    JEL classification:

    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • P28 - Political Economy and Comparative Economic Systems - - Socialist and Transition Economies - - - Natural Resources; Environment
    • L71 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Mining, Extraction, and Refining: Hydrocarbon Fuels
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:60:y:2016:i:c:p:15-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.