IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p798-d319566.html
   My bibliography  Save this article

Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand

Author

Listed:
  • Jaruwan Chontanawat

    (Department of Social Sciences and Humanities, School of Liberal Arts, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand)

  • Paitoon Wiboonchutikula

    (Faculty of Economics, Chulalongkorn University, Bangkok 10330, Thailand)

  • Atinat Buddhivanich

    (Bureau of Industrial Sectors Development, Iron and Steel Institute of Thailand, 1st-2nd Fl., Bangkok 10110, Thailand)

Abstract

Since the 1990s, CO 2 emissions have increased steadily in line with the growth of production and the use of energy in the manufacturing sector in Thailand. The Logarithmic Mean Divisia Index Method is used for analysing the sources of changes in CO 2 emissions as well as the CO 2 emission intensity of the sector in 2000–2018. On average throughout the period, both the amount of CO 2 emissions and the CO 2 emission intensity increased each year relative to the baseline. The structural change effect (effect of changes of manufacturing production composition) reduced, but the intensity effect (effect of changes of CO 2 emissions of individual industries) increased the amount of CO 2 emissions and the CO 2 emission intensity. The unfavourable CO 2 emission intensity change came from the increased energy intensity of individual industries. The increased use of coal and electricity raised the CO 2 emissions, whereas the insignificant change in emission factors showed little impact. Therefore, the study calls for policies that decrease the energy intensity of each industry by limiting the use of coal and reducing the electricity used by the manufacturing sector so that Thailand can make a positive contribution to the international community’s effort to achieve the goal of CO 2 emissions reduction.

Suggested Citation

  • Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:798-:d:319566
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/798/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/798/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Ang, B. W. & Pandiyan, G., 1997. "Decomposition of energy-induced CO2 emissions in manufacturing," Energy Economics, Elsevier, vol. 19(3), pages 363-374, July.
    3. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    4. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    5. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    6. Qi, Tianyu & Weng, Yuyan & Zhang, Xiliang & He, Jiankun, 2016. "An analysis of the driving factors of energy-related CO2 emission reduction in China from 2005 to 2013," Energy Economics, Elsevier, vol. 60(C), pages 15-22.
    7. Ang, B.W., 1995. "Decomposition methodology in industrial energy demand analysis," Energy, Elsevier, vol. 20(11), pages 1081-1095.
    8. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    9. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Bhattacharyya, Subhes C. & Matsumura, Wataru, 2010. "Changes in the GHG emission intensity in EU-15: Lessons from a decomposition analysis," Energy, Elsevier, vol. 35(8), pages 3315-3322.
    11. Sheinbaum, Claudia & Ruíz, Belizza J. & Ozawa, Leticia, 2011. "Energy consumption and related CO2 emissions in five Latin American countries: Changes from 1990 to 2006 and perspectives," Energy, Elsevier, vol. 36(6), pages 3629-3638.
    12. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    13. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
    14. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
    15. Park, Se-Hark, 1992. "Decomposition of industrial energy consumption : An alternative method," Energy Economics, Elsevier, vol. 14(4), pages 265-270, October.
    16. Bhattacharyya, Subhes C. & Ussanarassamee, Arjaree, 2004. "Decomposition of energy and CO2 intensities of Thai industry between 1981 and 2000," Energy Economics, Elsevier, vol. 26(5), pages 765-781, September.
    17. Ang, BW, 1994. "Decomposition of industrial energy consumption : The energy intensity approach," Energy Economics, Elsevier, vol. 16(3), pages 163-174, July.
    18. Jaruwan Chontanawat, 2019. "Driving Forces of Energy-Related CO 2 Emissions Based on Expanded IPAT Decomposition Analysis: Evidence from ASEAN and Four Selected Countries," Energies, MDPI, vol. 12(4), pages 1-23, February.
    19. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    20. Oh, Ilyoung & Wehrmeyer, Walter & Mulugetta, Yacob, 2010. "Decomposition analysis and mitigation strategies of CO2 emissions from energy consumption in South Korea," Energy Policy, Elsevier, vol. 38(1), pages 364-377, January.
    21. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    22. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    23. AkbostancI, Elif & Tunç, Gül Ipek & Türüt-AsIk, Serap, 2011. "CO2 emissions of Turkish manufacturing industry: A decomposition analysis," Applied Energy, Elsevier, vol. 88(6), pages 2273-2278, June.
    24. Moutinho, Victor & Moreira, António Carrizo & Silva, Pedro Miguel, 2015. "The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1485-1499.
    25. Boyd, Gale A. & Hanson, Donald A. & Sterner, Thomas, 1988. "Decomposition of changes in energy intensity : A comparison of the Divisia index and other methods," Energy Economics, Elsevier, vol. 10(4), pages 309-312, October.
    26. O’ Mahony, Tadhg & Zhou, Peng & Sweeney, John, 2012. "The driving forces of change in energy-related CO2 emissions in Ireland: A multi-sectoral decomposition from 1990 to 2007," Energy Policy, Elsevier, vol. 44(C), pages 256-267.
    27. Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
    28. Md Shahiduzzaman & Allan Layton & Khorshed Alam, 2015. "Decomposition of energy-related CO2 emissions in Australia: Challenges and policy implications," Economic Analysis and Policy, Elsevier, vol. 45(c), pages 100-111.
    29. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    30. Sun, J.W., 2000. "An analysis of the difference in CO2 emission intensity between Finland and Sweden," Energy, Elsevier, vol. 25(11), pages 1139-1146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edwin Bernard F. Lisaba & Neil Stephen A. Lopez, 2021. "Spatiotemporal Comparison of Drivers to CO 2 Emissions in ASEAN: A Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    2. Guokui Wang & Xiaojia Guo & Jinxiu Fu & Qingyue Wei & Linlin Zhang, 2022. "Alternative pathways to CO2 reduction in Gansu province, China," Energy & Environment, , vol. 33(4), pages 809-825, June.
    3. Wei Shi & Wenwen Tang & Fuwei Qiao & Zhiquan Sha & Chengyuan Wang & Sixue Zhao, 2022. "How to Reduce Carbon Dioxide Emissions from Power Systems in Gansu Province—Analyze from the Life Cycle Perspective," Energies, MDPI, vol. 15(10), pages 1-15, May.
    4. Weixin Yang & Hao Gao & Yunpeng Yang, 2022. "Analysis of Influencing Factors of Embodied Carbon in China’s Export Trade in the Background of “Carbon Peak” and “Carbon Neutrality”," Sustainability, MDPI, vol. 14(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    2. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    3. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    4. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    5. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
    6. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    7. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    8. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    9. Gideon Nkam Taka & Ta Thi Huong & Izhar Hussain Shah & Hung-Suck Park, 2020. "Determinants of Energy-Based CO 2 Emissions in Ethiopia: A Decomposition Analysis from 1990 to 2017," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    10. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
    11. Wang, Zhaojing & Jiang, Qingzhe & Dong, Kangyin & Mubarik, Muhammad Shujaat & Dong, Xiucheng, 2020. "Decomposition of the US CO2 emissions and its mitigation potential: An aggregate and sectoral analysis," Energy Policy, Elsevier, vol. 147(C).
    12. Rui Jiang & Rongrong Li & Qiuhong Wu, 2019. "Investigation for the Decomposition of Carbon Emissions in the USA with C-D Function and LMDI Methods," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
    13. Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
    14. Junghwan Lee & Jinsoo Kim, 2021. "A Decomposition Analysis of the Korean Manufacturing Sector: Monetary vs. Physical Outputs," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    15. Shan Yang & Shangkai Zhu & Gao Deng & Huan Li, 2022. "Study on Influencing Factors and Spatial Effects of Carbon Emissions Based on Logarithmic Mean Divisia Index Model: A Case Study of Hunan Province," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    16. Jie-fang Dong & Qiang Wang & Chun Deng & Xing-min Wang & Xiao-lei Zhang, 2016. "How to Move China toward a Green-Energy Economy: From a Sector Perspective," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
    17. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
    18. Xin Yang & Chunbo Ma & Anlu Zhang, 2016. "Decomposition of Net CO 2 Emission in the Wuhan Metropolitan Area of Central China," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
    19. Zbigniew Gołaś, 2022. "Changes in Energy-Related Carbon Dioxide Emissions of the Agricultural Sector in Poland from 2000 to 2019," Energies, MDPI, vol. 15(12), pages 1-18, June.
    20. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:798-:d:319566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.