IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v154y2015icp696-708.html
   My bibliography  Save this article

Multi-objective optimization on a heat exchanger network retrofit with a heat pump and analysis of CO2 emissions control

Author

Listed:
  • Kang, Lixia
  • Liu, Yongzhong

Abstract

Integrating a heat pump into a heat exchanger network (HEN) can effectively recover the low-grade heat and reduce energy consumption. In this paper, a multi-objective optimization model on a HEN retrofit with a heat pump is proposed, with the goals of minimizing the total annual cost for the retrofit and maximizing the total annual CO2 emission reduction simultaneously. The Pareto front of these two objectives is obtained by solving the proposed model. Each point on the Pareto front corresponds to the optimal configuration of the heat pump and the process heat exchangers near the pinch of the HEN. The effect of the heat pump on the economic efficiency and CO2 emission reduction of the HEN are analyzed. The results indicate that integrating the heat pump into the HEN can improve the recovery of low-grade heat and reduce energy consumption and CO2 emissions. However, the integration of the heat pump into a HEN could offset the benefits from CO2 emission reduction by energy savings, in which the CO2 emission reduction is restricted by a critical power input and a critical temperature rise. Consequently, rational installation and reasonable operation parameters of heat pump become significantly important to simultaneously ensure the reduction of CO2 emissions and energy savings in HEN retrofit.

Suggested Citation

  • Kang, Lixia & Liu, Yongzhong, 2015. "Multi-objective optimization on a heat exchanger network retrofit with a heat pump and analysis of CO2 emissions control," Applied Energy, Elsevier, vol. 154(C), pages 696-708.
  • Handle: RePEc:eee:appene:v:154:y:2015:i:c:p:696-708
    DOI: 10.1016/j.apenergy.2015.05.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915006674
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.05.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murr, R. & Thieriot, H. & Zoughaib, A. & Clodic, D., 2011. "Multi-objective optimization of a multi water-to-water heat pump system using evolutionary algorithm," Applied Energy, Elsevier, vol. 88(11), pages 3580-3591.
    2. Kapustenko, Petro O. & Ulyev, Leonid M. & Boldyryev, Stanislav A. & Garev, Andrey O., 2008. "Integration of a heat pump into the heat supply system of a cheese production plant," Energy, Elsevier, vol. 33(6), pages 882-889.
    3. Waheed, M.A. & Oni, A.O. & Adejuyigbe, S.B. & Adewumi, B.A. & Fadare, D.A., 2014. "Performance enhancement of vapor recompression heat pump," Applied Energy, Elsevier, vol. 114(C), pages 69-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bohlayer, Markus & Zöttl, Gregor, 2018. "Low-grade waste heat integration in distributed energy generation systems - An economic optimization approach," Energy, Elsevier, vol. 159(C), pages 327-343.
    2. Fan, Yuling & Xia, Xiaohua, 2018. "Building retrofit optimization models using notch test data considering energy performance certificate compliance," Applied Energy, Elsevier, vol. 228(C), pages 2140-2152.
    3. Pavão, L.V. & Costa, C.B.B. & Ravagnani, M.A.S.S. & Jiménez, L., 2017. "Costs and environmental impacts multi-objective heat exchanger networks synthesis using a meta-heuristic approach," Applied Energy, Elsevier, vol. 203(C), pages 304-320.
    4. Ramadan, M. & Khaled, M. & El Hage, H. & Harambat, F. & Peerhossaini, H., 2016. "Effect of air temperature non-uniformity on water–air heat exchanger thermal performance – Toward innovative control approach for energy consumption reduction," Applied Energy, Elsevier, vol. 173(C), pages 481-493.
    5. Xu, Yue & Zhang, Lu & Cui, Guomin & Yang, Qiguo, 2023. "A heuristic approach to design a cost-effective and low-CO2 emission synthesis in a heat exchanger network with crude oil distillation units," Energy, Elsevier, vol. 271(C).
    6. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-objective optimization of a distributed energy network integrated with heating interchange," Energy, Elsevier, vol. 109(C), pages 353-364.
    7. Lei Wen & Fei Yan, 2018. "Regional differences and influencing factors in the CO2 emissions of China’s power industry based on the panel data models considering power-consuming efficiency factor," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 1987-2007, October.
    8. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    9. Xu, Bin & Lin, Boqiang, 2016. "Differences in regional emissions in China's transport sector: Determinants and reduction strategies," Energy, Elsevier, vol. 95(C), pages 459-470.
    10. Xu, Bin & Lin, Boqiang, 2016. "A quantile regression analysis of China's provincial CO2 emissions: Where does the difference lie?," Energy Policy, Elsevier, vol. 98(C), pages 328-342.
    11. Kate Anderson & James Grymes & Alexandra Newman & Adam Warren, 2023. "North Carolina Water Utility Builds Resilience with Distributed Energy Resources," Interfaces, INFORMS, vol. 53(4), pages 247-265, July.
    12. Soualhi, Moncef & El Koujok, Mohamed & Nguyen, Khanh T.P. & Medjaher, Kamal & Ragab, Ahmed & Ghezzaz, Hakim & Amazouz, Mouloud & Ouali, Mohamed-Salah, 2021. "Adaptive prognostics in a controlled energy conversion process based on long- and short-term predictors," Applied Energy, Elsevier, vol. 283(C).
    13. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    14. Yang, Minbo & Li, Ting & Feng, Xiao & Wang, Yufei, 2020. "A simulation-based targeting method for heat pump placements in heat exchanger networks," Energy, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    2. Olga Arsenyeva & Leonid Tovazhnyanskyy & Petro Kapustenko & Jiří Jaromír Klemeš & Petar Sabev Varbanov, 2023. "Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries," Energies, MDPI, vol. 16(13), pages 1-28, June.
    3. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.
    5. Shi, Pengyuan & Zhang, Qingjun & Zeng, Aiwu & Ma, Youguang & Yuan, Xigang, 2020. "Eco-efficient vapor recompression-assisted pressure-swing distillation process for the separation of a maximum-boiling azeotrope," Energy, Elsevier, vol. 196(C).
    6. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    7. Wang, Naigen & Ye, Qing & Chen, Lijuan & Zhang, Haoxiang & Zhong, Jing, 2021. "Improving the economy and energy efficiency of separating water/acetonitrile/isopropanol mixture via triple-column pressure-swing distillation with heat-pump technology," Energy, Elsevier, vol. 215(PA).
    8. Lim, Dae Kyu & Ahn, Byoung Ha & Jeong, Ji Hwan, 2018. "Method to control an air conditioner by directly measuring the relative humidity of indoor air to improve the comfort and energy efficiency," Applied Energy, Elsevier, vol. 215(C), pages 290-299.
    9. Yang, Minbo & Feng, Xiao & Liu, Guilian, 2016. "Heat integration of heat pump assisted distillation into the overall process," Applied Energy, Elsevier, vol. 162(C), pages 1-10.
    10. Namuli, R. & Jaumard, B. & Awasthi, A. & Pillay, P., 2013. "Optimisation of biomass waste to energy conversion systems for rural grid-connected applications," Applied Energy, Elsevier, vol. 102(C), pages 1013-1021.
    11. Raphael Agner & Benjamin H. Y. Ong & Jan A. Stampfli & Pierre Krummenacher & Beat Wellig, 2022. "A Graphical Method for Combined Heat Pump and Indirect Heat Recovery Integration," Energies, MDPI, vol. 15(8), pages 1-21, April.
    12. Arsenyeva, Olga P. & Tovazhnyansky, Leonid L. & Kapustenko, Petro O. & Khavin, Gennadiy L., 2011. "Optimal design of plate-and-frame heat exchangers for efficient heat recovery in process industries," Energy, Elsevier, vol. 36(8), pages 4588-4598.
    13. Bohlayer, Markus & Zöttl, Gregor, 2018. "Low-grade waste heat integration in distributed energy generation systems - An economic optimization approach," Energy, Elsevier, vol. 159(C), pages 327-343.
    14. Long, Nguyen Van Duc & Minh, Le Quang & Nhien, Le Cao & Lee, Moonyong, 2015. "A novel self-heat recuperative dividing wall column to maximize energy efficiency and column throughput in retrofitting and debottlenecking of a side stream column," Applied Energy, Elsevier, vol. 159(C), pages 28-38.
    15. Wang, Yufei & Feng, Xiao & Cai, Yan & Zhu, Maobin & Chu, Khim H., 2009. "Improving a process's efficiency by exploiting heat pockets in its heat exchange network," Energy, Elsevier, vol. 34(11), pages 1925-1932.
    16. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2017. "Development of a novel processing system for efficient sour water stripping," Energy, Elsevier, vol. 125(C), pages 449-458.
    17. Xia, Hui & Ye, Qing & Feng, Shenyao & Li, Rui & Suo, Xiaomeng, 2017. "A novel energy-saving pressure swing distillation process based on self-heat recuperation technology," Energy, Elsevier, vol. 141(C), pages 770-781.
    18. Duan, Cong & Li, Chunli, 2023. "Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation," Energy, Elsevier, vol. 263(PC).
    19. Darko Goričanec & Igor Ivanovski & Jurij Krope & Danijela Urbancl, 2020. "The Exploitation of Low-Temperature Hot Water Boiler Sources with High-Temperature Heat Pump Integration," Energies, MDPI, vol. 13(23), pages 1-12, November.
    20. Nunes, J. & Silva, Pedro D. & Andrade, L.P. & Gaspar, Pedro D., 2016. "Key points on the energy sustainable development of the food industry – Case study of the Portuguese sausages industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 393-411.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:154:y:2015:i:c:p:696-708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.