IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v145y2018icp137-147.html
   My bibliography  Save this article

The Environmental Impact of Sharing: Household and Urban Economies in CO2 Emissions

Author

Listed:
  • Fremstad, Anders
  • Underwood, Anthony
  • Zahran, Sammy

Abstract

Studies find that per capita carbon dioxide (CO2) emissions decrease with household size and urban density. The demographic trends of declining household size and dense urbanization therefore produce countervailing effects with respect to emissions. We posit that both household and urban economies are driven by proximity and realized through sharing carbon-intensive goods. With detailed data from the United States Consumer Expenditure Survey, we construct a dataset of CO2 emissions at the household level and leverage a unique measure of residential density to estimate household and urban economies. Our estimates show that dense urban areas have per capita emissions roughly 20% lower than rural areas, and that adding an additional member to a household reduces per capita emissions by about 6%. We also find that household economies are about twice as large in rural areas as in dense urban areas and develop an explanation for this phenomenon. In theory, the carbon benefits of dense urbanization have the potential to offset the effects of declining household size. However, using historical US Census data and extrapolating from our estimates, we find that lost household economies have outpaced increased urban economies over the past fifty years.

Suggested Citation

  • Fremstad, Anders & Underwood, Anthony & Zahran, Sammy, 2018. "The Environmental Impact of Sharing: Household and Urban Economies in CO2 Emissions," Ecological Economics, Elsevier, vol. 145(C), pages 137-147.
  • Handle: RePEc:eee:ecolec:v:145:y:2018:i:c:p:137-147
    DOI: 10.1016/j.ecolecon.2017.08.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800917300721
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2017.08.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Anders Fremstad, 2016. "Sticky Norms, Endogenous Preferences, and Shareable Goods," Review of Social Economy, Taylor & Francis Journals, vol. 74(2), pages 194-214, June.
    2. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    3. Liddle, Brantley, 2013. "Urban density and climate change: a STIRPAT analysis using city-level data," Journal of Transport Geography, Elsevier, vol. 28(C), pages 22-29.
    4. Gaigné, Carl & Riou, Stéphane & Thisse, Jacques-François, 2012. "Are compact cities environmentally friendly?," Journal of Urban Economics, Elsevier, vol. 72(2), pages 123-136.
    5. Glaeser, Edward L. & Kahn, Matthew E., 2004. "Sprawl and urban growth," Handbook of Regional and Urban Economics, in: J. V. Henderson & J. F. Thisse (ed.), Handbook of Regional and Urban Economics, edition 1, volume 4, chapter 56, pages 2481-2527, Elsevier.
    6. Schröder, Carsten & Rehdanz, Katrin & Narita, Daiju & Okubo, Toshihiro, 2015. "The decline in average family size and its implications for the average benefits of within‐household sharing," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 67(3), pages 760-780.
    7. Alejandrina Salcedo & Todd Schoellman & Michèle Tertilt, 2012. "Families as roommates: Changes in U.S. household size from 1850 to 2000," Quantitative Economics, Econometric Society, vol. 3(1), pages 133-175, March.
    8. Angus Deaton & Christina Paxson, 1998. "Economies of Scale, Household Size, and the Demand for Food," Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 897-930, October.
    9. Gaigné, Carl & Riou, Stéphane & Thisse, Jacques-François, 2012. "Are compact cities environmentally friendly?," Journal of Urban Economics, Elsevier, vol. 72(2), pages 123-136.
    10. Liddle, Brantley, 2015. "What Are the Carbon Emissions Elasticities for Income and Population? Bridging STIRPAT and EKC via robust heterogeneous panel estimates," MPRA Paper 61304, University Library of Munich, Germany.
    11. Andrew Jorgenson & Daniel Auerbach & Brett Clark, 2014. "The (De-) carbonization of urbanization, 1960–2010," Climatic Change, Springer, vol. 127(3), pages 561-575, December.
    12. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    13. Shammin, Md Rumi & Bullard, Clark W., 2009. "Impact of cap-and-trade policies for reducing greenhouse gas emissions on U.S. households," Ecological Economics, Elsevier, vol. 68(8-9), pages 2432-2438, June.
    14. Mariano Rojas, 2007. "A Subjective Well-being Equivalence Scale for Mexico: Estimation and Poverty and Income-distribution Implications," Oxford Development Studies, Taylor & Francis Journals, vol. 35(3), pages 273-293.
    15. Shammin, Md. R. & Herendeen, Robert A. & Hanson, Michelle J. & Wilson, Eric J.H., 2010. "A multivariate analysis of the energy intensity of sprawl versus compact living in the U.S. for 2003," Ecological Economics, Elsevier, vol. 69(12), pages 2363-2373, October.
    16. Carl Gaigné & Stéphane Riou & Jacques-François Thisse, 2012. "Are Compact Cities Environmentally (and Socially) Desirable ?," Cahiers de recherche CREATE 2012-4, CREATE.
    17. Underwood, Anthony & Zahran, Sammy, 2015. "The carbon implications of declining household scale economies," Ecological Economics, Elsevier, vol. 116(C), pages 182-190.
    18. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smetschka, Barbara & Wiedenhofer, Dominik & Egger, Claudine & Haselsteiner, Edeltraud & Moran, Daniel & Gaube, Veronika, 2019. "Time Matters: The Carbon Footprint of Everyday Activities in Austria," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    2. Jiang, Yida & Long, Yin & Liu, Qiaoling & Dowaki, Kiyoshi & Ihara, Tomohiko, 2020. "Carbon emission quantification and decarbonization policy exploration for the household sector - Evidence from 51 Japanese cities," Energy Policy, Elsevier, vol. 140(C).
    3. Jingwen Huo & Jing Meng & Heran Zheng & Priti Parikh & Dabo Guan, 2023. "Achieving decent living standards in emerging economies challenges national mitigation goals for CO2 emissions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    5. Xie, Jun & Zhou, Shaojie & Teng, Fei & Gu, Alun, 2023. "The characteristics and driving factors of household CO2 and non-CO2 emissions in China," Ecological Economics, Elsevier, vol. 213(C).
    6. Lévay, Petra Zsuzsa & Vanhille, Josefine & Goedemé, Tim & Verbist, Gerlinde, 2021. "The association between the carbon footprint and the socio-economic characteristics of Belgian households," Ecological Economics, Elsevier, vol. 186(C).
    7. Soltani, Mohammad & Rahmani, Omeid & Ghasimi, Dara S.M. & Ghaderpour, Yousef & Pour, Amin Beiranvand & Misnan, Siti Hajar & Ngah, Ibrahim, 2020. "Impact of household demographic characteristics on energy conservation and carbon dioxide emission: Case from Mahabad city, Iran," Energy, Elsevier, vol. 194(C).
    8. Underwood, Anthony & Fremstad, Anders, 2018. "Does sharing backfire? A decomposition of household and urban economies in CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 404-413.
    9. Pottier, Antonin & Combet, Emmanuel & Cayla, Jean-Michel & de Lauretis, Simona & Nadaud, Franck, 2021. "Who emits CO2 ? Landscape of ecological inequalities in France from a critical perspective," FEEM Working Papers 311053, Fondazione Eni Enrico Mattei (FEEM).
    10. Wu, Wenchao & Kanamori, Yuko & Zhang, Runsen & Zhou, Qian & Takahashi, Kiyoshi & Masui, Toshihiko, 2021. "Implications of declining household economies of scale on electricity consumption and sustainability in China," Ecological Economics, Elsevier, vol. 184(C).
    11. Zhang, Yimeng & Wang, Feng & Zhang, Bing, 2023. "The impacts of household structure transitions on household carbon emissions in China," Ecological Economics, Elsevier, vol. 206(C).
    12. Jingbo Fan & Aobo Ran & Xiaomeng Li, 2019. "A Study on the Factors Affecting China’s Direct Household Carbon Emission and Comparison of Regional Differences," Sustainability, MDPI, vol. 11(18), pages 1-14, September.
    13. Schuster, Antonia & Lindner, Michael & Otto, Ilona M., 2023. "Whose house is on fire? Identifying socio-demographic and housing characteristics driving differences in the UK household CO2 emissions," Ecological Economics, Elsevier, vol. 207(C).
    14. Rui Huang & Shaohui Zhang & Changxin Liu, 2018. "Comparing Urban and Rural Household CO 2 Emissions—Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing," Energies, MDPI, vol. 11(5), pages 1-17, May.
    15. Fremstad, Anders & Paul, Mark, 2019. "The Impact of a Carbon Tax on Inequality," Ecological Economics, Elsevier, vol. 163(C), pages 88-97.
    16. Ivanova, Diana & Büchs, Milena, 2022. "Implications of shrinking household sizes for meeting the 1.5 °C climate targets," Ecological Economics, Elsevier, vol. 202(C).
    17. Ferenc Bakó & Judit Berkes & Cecília Szigeti, 2021. "Households’ Electricity Consumption in Hungarian Urban Areas," Energies, MDPI, vol. 14(10), pages 1-23, May.
    18. Diana Ivanova & Milena Büchs, 2020. "Household Sharing for Carbon and Energy Reductions: The Case of EU Countries," Energies, MDPI, vol. 13(8), pages 1-28, April.
    19. Haisen Wang & Gangqiang Yang & Ziyang Yue, 2023. "Breaking through ingrained beliefs: revisiting the impact of the digital economy on carbon emissions," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    20. Multala, Brendan & Wagner, Jeffrey & Wang, Yiwei, 2022. "Durability standards and clothing libraries for strengthening sustainable clothing markets," Ecological Economics, Elsevier, vol. 194(C).
    21. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Underwood, Anthony & Fremstad, Anders, 2018. "Does sharing backfire? A decomposition of household and urban economies in CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 404-413.
    2. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: Air quality and the density of American cities," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    3. Castells-Quintana, David & Dienesch, Elisa & Krause, Melanie, 2021. "Air pollution in an urban world: A global view on density, cities and emissions," Ecological Economics, Elsevier, vol. 189(C).
    4. Christian Hilber & Charles Palmer, 2014. "Urban development and air pollution: Evidence from a global panel of cities," GRI Working Papers 175, Grantham Research Institute on Climate Change and the Environment.
    5. Dascher, Kristof, 2013. "City Silhouette, World Climate," MPRA Paper 48375, University Library of Munich, Germany.
    6. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: air quality and the density of American cities," LSE Research Online Documents on Economics 117385, London School of Economics and Political Science, LSE Library.
    7. Kahn, Matthew E. & Walsh, Randall, 2015. "Cities and the Environment," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 405-465, Elsevier.
    8. Cárdenas Rodríguez, Miguel & Dupont-Courtade, Laura & Oueslati, Walid, 2016. "Air pollution and urban structure linkages: Evidence from European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1-9.
    9. Legras, Sophie & Cavailhès, Jean, 2016. "Environmental performance of the urban form," Regional Science and Urban Economics, Elsevier, vol. 59(C), pages 1-11.
    10. Denant-Boemont, Laurent & Gaigné, Carl & Gaté, Romain, 2018. "Urban spatial structure, transport-related emissions and welfare," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 29-45.
    11. Rainald Borck & Takatoshi Tabuchi, 2019. "Pollution and city size: can cities be too small?," Journal of Economic Geography, Oxford University Press, vol. 19(5), pages 995-1020.
    12. Ma, Jun & Cheng, Jack C.P., 2016. "Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology," Applied Energy, Elsevier, vol. 183(C), pages 182-192.
    13. Kim, Jinwon, 2016. "Vehicle fuel-efficiency choices, emission externalities, and urban sprawl," Economics of Transportation, Elsevier, vol. 5(C), pages 24-36.
    14. Blaudin de Thé, Camille & Carantino, Benjamin & Lafourcade, Miren, 2021. "The carbon ‘carprint’ of urbanization: New evidence from French cities," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    15. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    16. Ivan Muñiz & Andrés Dominguez, 2020. "The Impact of Urban Form and Spatial Structure on per Capita Carbon Footprint in U.S. Larger Metropolitan Areas," Sustainability, MDPI, vol. 12(1), pages 1-19, January.
    17. Larson, William & Yezer, Anthony, 2015. "The energy implications of city size and density," Journal of Urban Economics, Elsevier, vol. 90(C), pages 35-49.
    18. Pflüger, Michael, 2021. "City size, pollution and emission policies," Journal of Urban Economics, Elsevier, vol. 126(C).
    19. Rainald Borck & Michael Pflüger, 2019. "Green cities? Urbanization, trade, and the environment," Journal of Regional Science, Wiley Blackwell, vol. 59(4), pages 743-766, September.
    20. Borck, Rainald, 2014. "Will skyscrapers save the planet?," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100566, Verein für Socialpolitik / German Economic Association.

    More about this item

    Keywords

    Emissions; Household size; Urban density; Sharing; Energy;
    All these keywords.

    JEL classification:

    • D1 - Microeconomics - - Household Behavior
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • R2 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis
    • R3 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:145:y:2018:i:c:p:137-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.