IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v116y2015icp182-190.html
   My bibliography  Save this article

The carbon implications of declining household scale economies

Author

Listed:
  • Underwood, Anthony
  • Zahran, Sammy

Abstract

In the United States, average household size decreased significantly over the past half century. From 1950 to 2010, the number of households increased 72% faster than population size. In this paper we consider how this drift toward more and smaller households, occurring alongside rising affluence, undermines efforts to curb carbon dioxide (CO2) emissions by eroding household scale economies of consumption and associated CO2 emissions. To estimate the household scaling of CO2 emissions, we link consumer expenditure data to an economic input–output life-cycle assessment model. We find that the CO2 scaling benefits of cohabitation are compellingly large, with the carbon footprint of a representative person cohabiting with others being 23% less, on average, than if that same person lived alone. Additionally, we find that household scale economies: 1) decrease in income, reflecting the rise in the percentage of household expenditures devoted to more rival goods and services; and 2) increase intuitively in household size, reflecting the direct expenditure sharing benefits of cohabitation. The combined downward pressure on scale economies from declining household size and rising incomes, typifying the trajectory of developing societies toward more and smaller households and rising affluence, places significant upward pressure on CO2 emissions globally.

Suggested Citation

  • Underwood, Anthony & Zahran, Sammy, 2015. "The carbon implications of declining household scale economies," Ecological Economics, Elsevier, vol. 116(C), pages 182-190.
  • Handle: RePEc:eee:ecolec:v:116:y:2015:i:c:p:182-190
    DOI: 10.1016/j.ecolecon.2015.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092180091500213X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2015.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Anqing, 2003. "The impact of population pressure on global carbon dioxide emissions, 1975-1996: evidence from pooled cross-country data," Ecological Economics, Elsevier, vol. 44(1), pages 29-42, February.
    2. Dalton, Michael & O'Neill, Brian & Prskawetz, Alexia & Jiang, Leiwen & Pitkin, John, 2008. "Population aging and future carbon emissions in the United States," Energy Economics, Elsevier, vol. 30(2), pages 642-675, March.
    3. Kerkhof, Annemarie C. & Nonhebel, Sanderine & Moll, Henri C., 2009. "Relating the environmental impact of consumption to household expenditures: An input-output analysis," Ecological Economics, Elsevier, vol. 68(4), pages 1160-1170, February.
    4. Leiwen Jiang & Karen Hardee, 2011. "How do Recent Population Trends Matter to Climate Change?," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(2), pages 287-312, April.
    5. Vringer, Kees & Blok, Kornelis, 1995. "The direct and indirect energy requirements of households in the Netherlands," Energy Policy, Elsevier, vol. 23(10), pages 893-910, October.
    6. Alejandrina Salcedo & Todd Schoellman & Michèle Tertilt, 2012. "Families as roommates: Changes in U.S. household size from 1850 to 2000," Quantitative Economics, Econometric Society, vol. 3(1), pages 133-175, March.
    7. Parry, Ian W. H., 2004. "Are emissions permits regressive?," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 364-387, March.
    8. Brantley Liddle, 2011. "Consumption-Driven Environmental Impact and Age Structure Change in OECD Countries," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 24(30), pages 749-770.
    9. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    10. Liddle, Brantley & Lung, Sidney, 2010. "Age-Structure, Urbanization, and Climate Change in Developed Countries: Revisiting STIRPAT for Disaggregated Population and Consumption-Related Environmental Impacts," MPRA Paper 59579, University Library of Munich, Germany.
    11. Alexia Prskawetz & Jiang Leiwen & Brian C. O Neill, 2004. "Demographic composition and projections of car use in Austria," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 2(1), pages 175-202.
    12. Bin, Shui & Dowlatabadi, Hadi, 2005. "Corrigendum to "Consumer lifestyles approach to US energy use and the related CO2 emissions": [Energy Policy 33 (2005) 197-208]," Energy Policy, Elsevier, vol. 33(10), pages 1362-1363, July.
    13. Richard T. Carson, 2010. "The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 3-23, Winter.
    14. Reinders, A. H. M. E. & Vringer, K. & Blok, K., 2003. "The direct and indirect energy requirement of households in the European Union," Energy Policy, Elsevier, vol. 31(2), pages 139-153, January.
    15. Mankiw, N. Gregory & Weil, David N., 1989. "The baby boom, the baby bust, and the housing market," Regional Science and Urban Economics, Elsevier, vol. 19(2), pages 235-258, May.
    16. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    17. Emilio Zagheni, 2011. "The Leverage of Demographic Dynamics on Carbon Dioxide Emissions: Does Age Structure Matter?," Demography, Springer;Population Association of America (PAA), vol. 48(1), pages 371-399, February.
    18. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    19. Shammin, Md Rumi & Bullard, Clark W., 2009. "Impact of cap-and-trade policies for reducing greenhouse gas emissions on U.S. households," Ecological Economics, Elsevier, vol. 68(8-9), pages 2432-2438, June.
    20. Eugene A. Rosa & Thomas Dietz, 2012. "Human drivers of national greenhouse-gas emissions," Nature Climate Change, Nature, vol. 2(8), pages 581-586, August.
    21. Matthew A. Cole & Eric Neumayer, 2003. "Examining the Impact of Demographic Factors On Air Pollution," Labor and Demography 0312005, University Library of Munich, Germany, revised 13 May 2004.
    22. Angus Deaton, 2005. "Franco Modigliani and the life-cycle theory of consumption," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 58(233-234), pages 91-107.
    23. World Bank, 2013. "World Development Indicators 2013," World Bank Publications - Books, The World Bank Group, number 13191, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smetschka, Barbara & Wiedenhofer, Dominik & Egger, Claudine & Haselsteiner, Edeltraud & Moran, Daniel & Gaube, Veronika, 2019. "Time Matters: The Carbon Footprint of Everyday Activities in Austria," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    2. Shi, Xunpeng & Wang, Keying & Cheong, Tsun Se & Zhang, Hongwu, 2020. "Prioritizing driving factors of household carbon emissions: An application of the LASSO model with survey data," Energy Economics, Elsevier, vol. 92(C).
    3. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    4. Carolina Grottera & Franck Nadaud & Carine Barbier & Emmanuel Combet, 2016. "Scale gains in household consumption and their modeling implications in poverty and distribution analyses," Post-Print hal-01694022, HAL.
    5. Lévay, Petra Zsuzsa & Vanhille, Josefine & Goedemé, Tim & Verbist, Gerlinde, 2021. "The association between the carbon footprint and the socio-economic characteristics of Belgian households," Ecological Economics, Elsevier, vol. 186(C).
    6. Theine, Hendrik & Humer, Stefan & Moser, Mathias & Schnetzer, Matthias, 2022. "Emissions inequality: Disparities in income, expenditure, and the carbon footprint in Austria," Ecological Economics, Elsevier, vol. 197(C).
    7. Young, Mischa & Lachapelle, Ugo, 2017. "Transportation behaviours of the growing Canadian single-person households," Transport Policy, Elsevier, vol. 57(C), pages 41-50.
    8. Underwood, Anthony & Fremstad, Anders, 2018. "Does sharing backfire? A decomposition of household and urban economies in CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 404-413.
    9. Pottier, Antonin & Combet, Emmanuel & Cayla, Jean-Michel & de Lauretis, Simona & Nadaud, Franck, 2021. "Who emits CO2 ? Landscape of ecological inequalities in France from a critical perspective," FEEM Working Papers 311053, Fondazione Eni Enrico Mattei (FEEM).
    10. Wu, Wenchao & Kanamori, Yuko & Zhang, Runsen & Zhou, Qian & Takahashi, Kiyoshi & Masui, Toshihiko, 2021. "Implications of declining household economies of scale on electricity consumption and sustainability in China," Ecological Economics, Elsevier, vol. 184(C).
    11. Martin Burgess & Mark Whitehead, 2020. "Just Transitions , Poverty and Energy Consumption: Personal Carbon Accounts and Households in Poverty," Energies, MDPI, vol. 13(22), pages 1-24, November.
    12. Zhang, Yimeng & Wang, Feng & Zhang, Bing, 2023. "The impacts of household structure transitions on household carbon emissions in China," Ecological Economics, Elsevier, vol. 206(C).
    13. Fremstad, Anders & Underwood, Anthony & Zahran, Sammy, 2018. "The Environmental Impact of Sharing: Household and Urban Economies in CO2 Emissions," Ecological Economics, Elsevier, vol. 145(C), pages 137-147.
    14. Fremstad, Anders & Paul, Mark, 2019. "The Impact of a Carbon Tax on Inequality," Ecological Economics, Elsevier, vol. 163(C), pages 88-97.
    15. Ivanova, Diana & Büchs, Milena, 2022. "Implications of shrinking household sizes for meeting the 1.5 °C climate targets," Ecological Economics, Elsevier, vol. 202(C).
    16. Yu Zhou & Caijiang Zhang & Zhangwen Li, 2023. "The impact of digital financial inclusion on household carbon emissions: evidence from China," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 12(1), pages 1-21, December.
    17. Viktorija Bobinaite & Inga Konstantinaviciute & Arvydas Galinis & Mária Bartek-Lesi & Viktor Rácz & Bettina Dézsi, 2022. "Energy Sufficiency in the Household Sector of Lithuania and Hungary: The Case of Heated Floor Area," Sustainability, MDPI, vol. 14(23), pages 1-19, December.
    18. Chongwu Xia & Chong Guan & Ding Ding & Yun Teng, 2024. "Navigating Success in Carbon Offset Projects: A Deep Dive into the Determinants Using Topic Modeling," Sustainability, MDPI, vol. 16(4), pages 1-19, February.
    19. Diana Ivanova & Milena Büchs, 2020. "Household Sharing for Carbon and Energy Reductions: The Case of EU Countries," Energies, MDPI, vol. 13(8), pages 1-28, April.
    20. Long, Yin & Dong, Liang & Yoshida, Yoshikuni & Li, Zhaoling, 2018. "Evaluation of energy-related household carbon footprints in metropolitan areas of Japan," Ecological Modelling, Elsevier, vol. 377(C), pages 16-25.
    21. Andreas Froemelt & René Buffat & Stefanie Hellweg, 2020. "Machine learning based modeling of households: A regionalized bottom‐up approach to investigate consumption‐induced environmental impacts," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 639-652, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chuanguo & Tan, Zheng, 2016. "The relationships between population factors and China's carbon emissions: Does population aging matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1018-1025.
    2. Emilio Zagheni, 2011. "The Leverage of Demographic Dynamics on Carbon Dioxide Emissions: Does Age Structure Matter?," Demography, Springer;Population Association of America (PAA), vol. 48(1), pages 371-399, February.
    3. Liddle, Brantley, 2013. "Population, Affluence, and Environmental Impact Across Development: Evidence from Panel Cointegration Modeling," MPRA Paper 52088, University Library of Munich, Germany.
    4. Fang, Wen Shwo & Miller, Stephen M. & Yeh, Chih-Chuan, 2012. "The effect of ESCOs on energy use," Energy Policy, Elsevier, vol. 51(C), pages 558-568.
    5. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    6. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    7. Lisa Gianmoena & Vicente Rios, 2018. "The Determinants of CO2 Emissions Differentials with Cross-Country Interaction Effects: A Dynamic Spatial Panel Data Bayesian Model Averaging Approach," Discussion Papers 2018/234, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    8. Jaehyeok Kim & Hyungwoo Lim & Ha-Hyun Jo, 2020. "Do Aging and Low Fertility Reduce Carbon Emissions in Korea? Evidence from IPAT Augmented EKC Analysis," IJERPH, MDPI, vol. 17(8), pages 1-15, April.
    9. Ethan Sharygin, 2013. "The Carbon Cost of an Educated Future: A Consumer Lifestyle Approach," VID Working Papers 1304, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
    10. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    11. Rafael Morales-Lage & Aurelia Bengochea-Morancho & Inmaculada Martínez-Zarzoso, 2016. "The determinants of CO2 emissions: evidence from European countries," Working Papers 2016/04, Economics Department, Universitat Jaume I, Castellón (Spain).
    12. Zhang, Xiaoling & Wang, Yue, 2017. "How to reduce household carbon emissions: A review of experience and policy design considerations," Energy Policy, Elsevier, vol. 102(C), pages 116-124.
    13. Ota, Toru & Kakinaka, Makoto & Kotani, Koji, 2018. "Demographic effects on residential electricity and city gas consumption in the aging society of Japan," Energy Policy, Elsevier, vol. 115(C), pages 503-513.
    14. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    15. Menz, Tobias & Welsch, Heinz, 2012. "Population aging and carbon emissions in OECD countries: Accounting for life-cycle and cohort effects," Energy Economics, Elsevier, vol. 34(3), pages 842-849.
    16. Ramachandra, T.V. & Bajpai, Vishnu & Kulkarni, Gouri & Aithal, Bharath H. & Han, Sun Sheng, 2017. "Economic disparity and CO2 emissions: The domestic energy sector in Greater Bangalore, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1331-1344.
    17. Vanesa Zorrilla-Muñoz & Marc Petz & María Silveria Agulló-Tomás, 2021. "GARCH model to estimate the impact of agricultural greenhouse gas emissions per sociodemographic factors and CAP in Spain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4675-4697, March.
    18. Zhang, Junjie & Yu, Biying & Wei, Yi-Ming, 2018. "Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces," Applied Energy, Elsevier, vol. 229(C), pages 236-252.
    19. Hasanov, Fakhri J. & Bulut, Cihan & Suleymanov, Elchin, 2016. "Do population age groups matter in the energy use of the oil-exporting countries?," Economic Modelling, Elsevier, vol. 54(C), pages 82-99.
    20. Zhou, Yang & Liu, Yansui, 2016. "Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China," Applied Energy, Elsevier, vol. 180(C), pages 800-809.

    More about this item

    Keywords

    Economies of scale; CO2 emissions; Household size; Demographic change; Development;
    All these keywords.

    JEL classification:

    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • J12 - Labor and Demographic Economics - - Demographic Economics - - - Marriage; Marital Dissolution; Family Structure
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:116:y:2015:i:c:p:182-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.