IDEAS home Printed from https://ideas.repec.org/a/wly/sustdv/v29y2021i1p1-12.html
   My bibliography  Save this article

The mitigating effects of economic complexity and renewable energy on carbon emissions in developed countries

Author

Listed:
  • Buhari Doğan
  • Oana M. Driha
  • Daniel Balsalobre Lorente
  • Umer Shahzad

Abstract

Under the growing threats of climate change, innovation and pollution reduction have become driving forces for cleaner economic growth and the environment. This study endeavors to analyze the effect of economic complexity—understood as structural transformation toward more sophisticated and knowledge‐based production, economic progress, renewable energy consumption, and population growth over carbon emissions. Our study employs panel data for a sample of 28 OECD countries covering the period of 1990–2014. The main contribution to the energy economics literature is given by bringing together the concept of environmental degradation and economic complexity controlling via renewable energy consumption and economic and population growth. Based on the extensive empirical analysis (augmented mean group estimator, panel cointegration, and panel regression techniques), we conclude that economic complexity and renewable energy might help in mitigating the environmental degradation problems in OECD countries.

Suggested Citation

  • Buhari Doğan & Oana M. Driha & Daniel Balsalobre Lorente & Umer Shahzad, 2021. "The mitigating effects of economic complexity and renewable energy on carbon emissions in developed countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 1-12, January.
  • Handle: RePEc:wly:sustdv:v:29:y:2021:i:1:p:1-12
    DOI: 10.1002/sd.2125
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sd.2125
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sd.2125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seow, Yingying & Goffin, Nicholas & Rahimifard, Shahin & Woolley, Elliot, 2016. "A ‘Design for Energy Minimization’ approach to reduce energy consumption during the manufacturing phase," Energy, Elsevier, vol. 109(C), pages 894-905.
    2. Lee, Chien-Chiang & Lee, Jun-De, 2009. "Income and CO2 emissions: Evidence from panel unit root and cointegration tests," Energy Policy, Elsevier, vol. 37(2), pages 413-423, February.
    3. Martínez-Zarzoso, Inmaculada & Maruotti, Antonello, 2011. "The impact of urbanization on CO2 emissions: Evidence from developing countries," Ecological Economics, Elsevier, vol. 70(7), pages 1344-1353, May.
    4. Chandran Govindaraju, V.G.R. & Tang, Chor Foon, 2013. "The dynamic links between CO2 emissions, economic growth and coal consumption in China and India," Applied Energy, Elsevier, vol. 104(C), pages 310-318.
    5. Chen, Jing & Zhou, Chunshan & Wang, Shaojian & Li, Shijie, 2018. "Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally," Applied Energy, Elsevier, vol. 230(C), pages 94-105.
    6. Ahmed, Khalid & Shahbaz, Muhammad & Kyophilavong, Phouphet, 2016. "Revisiting the emissions-energy-trade nexus: Evidence from the newly industrializing," MPRA Paper 68680, University Library of Munich, Germany, revised 05 Jan 2016.
    7. Nam, Taewoo, 2019. "Technology usage, expected job sustainability, and perceived job insecurity," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 155-165.
    8. Poncet, Sandra & Starosta de Waldemar, Felipe, 2013. "Export Upgrading and Growth: The Prerequisite of Domestic Embeddedness," World Development, Elsevier, vol. 51(C), pages 104-118.
    9. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    10. Sarwar, Suleman & Chen, Wei & Waheed, Rida, 2017. "Electricity consumption, oil price and economic growth: Global perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 9-18.
    11. Jean Imbs & Romain Wacziarg, 2003. "Stages of Diversification," American Economic Review, American Economic Association, vol. 93(1), pages 63-86, March.
    12. Rennings, Klaus, 2000. "Redefining innovation -- eco-innovation research and the contribution from ecological economics," Ecological Economics, Elsevier, vol. 32(2), pages 319-332, February.
    13. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    14. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    15. Hartmann, Dominik & Guevara, Miguel R. & Jara-Figueroa, Cristian & Aristarán, Manuel & Hidalgo, César A., 2017. "Linking Economic Complexity, Institutions, and Income Inequality," World Development, Elsevier, vol. 93(C), pages 75-93.
    16. Panagiotis Fotis & Michael Polemis, 2018. "Sustainable development, environmental policy and renewable energy use: A dynamic panel data approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 26(6), pages 726-740, November.
    17. Saboori, Behnaz & Sulaiman, Jamalludin, 2013. "Environmental degradation, economic growth and energy consumption: Evidence of the environmental Kuznets curve in Malaysia," Energy Policy, Elsevier, vol. 60(C), pages 892-905.
    18. Felipe, Jesus & Kumar, Utsav & Abdon, Arnelyn & Bacate, Marife, 2012. "Product complexity and economic development," Structural Change and Economic Dynamics, Elsevier, vol. 23(1), pages 36-68.
    19. Andreas Dietrich, 2012. "Does growth cause structural change, or is it the other way around? A dynamic panel data analysis for seven OECD countries," Empirical Economics, Springer, vol. 43(3), pages 915-944, December.
    20. Sebastián Bustos & Charles Gomez & Ricardo Hausmann & César A Hidalgo, 2012. "The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
    21. Francis Teal & Markus Eberhardt, 2010. "Productivity Analysis in Global Manufacturing Production," Economics Series Working Papers 515, University of Oxford, Department of Economics.
    22. Ozcan, Burcu, 2013. "The nexus between carbon emissions, energy consumption and economic growth in Middle East countries: A panel data analysis," Energy Policy, Elsevier, vol. 62(C), pages 1138-1147.
    23. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    24. Acaravci, Ali & Ozturk, Ilhan, 2010. "On the relationship between energy consumption, CO2 emissions and economic growth in Europe," Energy, Elsevier, vol. 35(12), pages 5412-5420.
    25. Ferrarini, Benno & Scaramozzino, Pasquale, 2016. "Production complexity, adaptability and economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 37(C), pages 52-61.
    26. Sandra Poncet & Felipe Starosta, 2013. "Export upgrading and growth in China: the prerequisite of domestic embeddedness," PSE - G-MOND WORKING PAPERS halshs-00960684, HAL.
    27. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    28. Hu, Yuan & Peng, Ling & Li, Xiang & Yao, Xiaojing & Lin, Hui & Chi, Tianhe, 2018. "A novel evolution tree for analyzing the global energy consumption structure," Energy, Elsevier, vol. 147(C), pages 1177-1187.
    29. Marzio Galeotti & Matteo Manera & Alessandro Lanza, 2009. "On the Robustness of Robustness Checks of the Environmental Kuznets Curve Hypothesis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(4), pages 551-574, April.
    30. Eberhardt, Markus & Teal, Francis, 2008. "Modeling technology and technological change in manufacturing: how do countries differ?," MPRA Paper 10690, University Library of Munich, Germany.
    31. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    32. Hausmann, Ricardo & Hidalgo, Cesar, 2014. "The Atlas of Economic Complexity: Mapping Paths to Prosperity," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262525429, December.
    33. Paresh Kumar Narayan, 2005. "The saving and investment nexus for China: evidence from cointegration tests," Applied Economics, Taylor & Francis Journals, vol. 37(17), pages 1979-1990.
    34. Alvarez-Herranz, Agustin & Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Cantos, José María, 2017. "Energy innovation and renewable energy consumption in the correction of air pollution levels," Energy Policy, Elsevier, vol. 105(C), pages 386-397.
    35. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    36. Robert J. Hill & Elisabetta Magnani, 2002. "An Exploration of the Conceptual and Empirical Basis of the Environmental Kuznets Curve," Australian Economic Papers, Wiley Blackwell, vol. 41(2), pages 239-254, June.
    37. Markus Eberhardt & Francis Teal, 2011. "Econometrics For Grumblers: A New Look At The Literature On Cross‐Country Growth Empirics," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 109-155, February.
    38. Jayanthakumaran, Kankesu & Verma, Reetu & Liu, Ying, 2012. "CO2 emissions, energy consumption, trade and income: A comparative analysis of China and India," Energy Policy, Elsevier, vol. 42(C), pages 450-460.
    39. Guo, Pibin & Wang, Ting & Li, Dan & Zhou, Xijun, 2016. "How energy technology innovation affects transition of coal resource-based economy in China," Energy Policy, Elsevier, vol. 92(C), pages 1-6.
    40. Tarancon, Miguel Angel & del Rio, Pablo, 2007. "CO2 emissions and intersectoral linkages. The case of Spain," Energy Policy, Elsevier, vol. 35(2), pages 1100-1116, February.
    41. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    42. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    43. Luigi Aldieri & Concetto Paolo Vinci, 2017. "The Role of Technology Spillovers in the Process of Water Pollution Abatement for Large International Firms," Sustainability, MDPI, vol. 9(5), pages 1-8, May.
    44. Tetsuya Tsurumi & Shunsuke Managi, 2010. "Decomposition of the environmental Kuznets curve: scale, technique, and composition effects," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 11(1), pages 19-36, February.
    45. Shahbaz, Muhammad & Sarwar, Suleman & Chen, Wei & Malik, Muhammad Nasir, 2017. "Dynamics of electricity consumption, oil price and economic growth: Global perspective," Energy Policy, Elsevier, vol. 108(C), pages 256-270.
    46. Sinha, Avik & Sen, Sudipta, 2016. "Atmospheric consequences of trade and human development: A case of BRIC countries," MPRA Paper 100011, University Library of Munich, Germany.
    47. Kahia, Montassar & Ben Aïssa, Mohamed Safouane & Charfeddine, Lanouar, 2016. "Impact of renewable and non-renewable energy consumption on economic growth: New evidence from the MENA Net Oil Exporting Countries (NOECs)," Energy, Elsevier, vol. 116(P1), pages 102-115.
    48. Peter Pedroni, 2001. "Purchasing Power Parity Tests In Cointegrated Panels," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 727-731, November.
    49. Yin, Jianhua & Zheng, Mingzheng & Chen, Jian, 2015. "The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China," Energy Policy, Elsevier, vol. 77(C), pages 97-108.
    50. Cesar A. Hidalgo & Ricardo Hausmann, 2009. "The Building Blocks of Economic Complexity," Papers 0909.3890, arXiv.org.
    51. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    52. Olimpia Neagu & Mircea Constantin Teodoru, 2019. "The Relationship between Economic Complexity, Energy Consumption Structure and Greenhouse Gas Emission: Heterogeneous Panel Evidence from the EU Countries," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    53. Sahbi Farhani & Jaleleddine Ben Rejeb, 2012. "Energy Consumption, Economic Growth and CO2 Emissions: Evidence from Panel Data for MENA Region," International Journal of Energy Economics and Policy, Econjournals, vol. 2(2), pages 71-81.
    54. Hamrita, Mohamed Essaied & Mekdam, Mejdi, 2016. "Energy consumption, CO2 emissions and economic growth nexus: Evidence from panel Granger causality test," MPRA Paper 72908, University Library of Munich, Germany.
    55. Liddle, Brantley & Lung, Sidney, 2010. "Age-Structure, Urbanization, and Climate Change in Developed Countries: Revisiting STIRPAT for Disaggregated Population and Consumption-Related Environmental Impacts," MPRA Paper 59579, University Library of Munich, Germany.
    56. Menz, Tobias & Welsch, Heinz, 2012. "Population aging and carbon emissions in OECD countries: Accounting for life-cycle and cohort effects," Energy Economics, Elsevier, vol. 34(3), pages 842-849.
    57. Hartmann, Dominik & Pyka, Andreas, 2013. "Innovation, economic diversification and human development," FZID Discussion Papers 65-2013, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    58. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    59. Zhang, Chuanguo & Lin, Yan, 2012. "Panel estimation for urbanization, energy consumption and CO2 emissions: A regional analysis in China," Energy Policy, Elsevier, vol. 49(C), pages 488-498.
    60. C. A. Hidalgo & B. Klinger & A. -L. Barabasi & R. Hausmann, 2007. "The Product Space Conditions the Development of Nations," Papers 0708.2090, arXiv.org.
    61. Guido Caldarelli & Matthieu Cristelli & Andrea Gabrielli & Luciano Pietronero & Antonio Scala & Andrea Tacchella, 2012. "A Network Analysis of Countries’ Export Flows: Firm Grounds for the Building Blocks of the Economy," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
    62. Kijima, Masaaki & Nishide, Katsumasa & Ohyama, Atsuyuki, 2010. "Economic models for the environmental Kuznets curve: A survey," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1187-1201, July.
    63. Sarwar, Suleman & Shahzad, Umer & Chang, Dongfeng & Tang, Biyan, 2019. "Economic and non-economic sector reforms in carbon mitigation: Empirical evidence from Chinese provinces," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 146-154.
    64. Lapatinas, Athanasios & Garas, Antonios & Boleti, Eirini & Kyriakou, Alexandra, 2019. "Economic complexity and environmental performance: Evidence from a world sample," MPRA Paper 92833, University Library of Munich, Germany.
    65. Ozcan, Burcu & Tzeremes, Panayiotis G. & Tzeremes, Nickolaos G., 2020. "Energy consumption, economic growth and environmental degradation in OECD countries," Economic Modelling, Elsevier, vol. 84(C), pages 203-213.
    66. Kim, Junmo, 2018. "Are countries ready for the new meso revolution? Testing the waters for new industrial change in Korea," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 34-39.
    67. Asier Minondo & Francisco Requena-Silvente, 2013. "Does complexity explain the structure of trade?," Canadian Journal of Economics, Canadian Economics Association, vol. 46(3), pages 928-955, August.
    68. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    69. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    70. Matthieu Cristelli & Andrea Tacchella & Luciano Pietronero, 2015. "The Heterogeneous Dynamics of Economic Complexity," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-15, February.
    71. Syed Abdul Rehman Khan & Yu Zhang & Anil Kumar & Edmundas Zavadskas & Dalia Streimikiene, 2020. "Measuring the impact of renewable energy, public health expenditure, logistics, and environmental performance on sustainable economic growth," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 833-843, July.
    72. Eberhardt, Markus & Bond, Stephen, 2009. "Cross-section dependence in nonstationary panel models: a novel estimator," MPRA Paper 17692, University Library of Munich, Germany.
    73. Saikkonen, Pentti, 1991. "Asymptotically Efficient Estimation of Cointegration Regressions," Econometric Theory, Cambridge University Press, vol. 7(1), pages 1-21, March.
    74. Feng, Taiwen & Sun, Linyan & Zhang, Ying, 2009. "The relationship between energy consumption structure, economic structure and energy intensity in China," Energy Policy, Elsevier, vol. 37(12), pages 5475-5483, December.
    75. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    76. Shahbaz, Muhammad & Kablan, Sandrine & Hammoudeh, Shawkat & Nasir, Muhammad Ali & Kontoleon, Andreas, 2020. "Environmental Implications of Increased US Oil Production and Liberal Growth Agenda in Post -Paris Agreement Era," MPRA Paper 99277, University Library of Munich, Germany, revised 19 Mar 2020.
    77. AkbostancI, Elif & Türüt-AsIk, Serap & Tunç, G. Ipek, 2009. "The relationship between income and environment in Turkey: Is there an environmental Kuznets curve?," Energy Policy, Elsevier, vol. 37(3), pages 861-867, March.
    78. Ming Zhang & Yan Song, 2015. "Exploring influence factors governing the changes in China’s final energy consumption under a new framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 653-668, August.
    79. Apergis, Nicholas, 2016. "Environmental Kuznets curves: New evidence on both panel and country-level CO2 emissions," Energy Economics, Elsevier, vol. 54(C), pages 263-271.
    80. Tacchella, A. & Cristelli, M. & Caldarelli, G. & Gabrielli, A. & Pietronero, L., 2013. "Economic complexity: Conceptual grounding of a new metrics for global competitiveness," Journal of Economic Dynamics and Control, Elsevier, vol. 37(8), pages 1683-1691.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bashir, Muhammad Farhan & MA, Benjiang & Hussain, Hafezali Iqbal & Shahbaz, Muhammad & Koca, Kemal & Shahzadi, Irum, 2022. "Evaluating environmental commitments to COP21 and the role of economic complexity, renewable energy, financial development, urbanization, and energy innovation: Empirical evidence from the RCEP countr," Renewable Energy, Elsevier, vol. 184(C), pages 541-550.
    2. Sun, Yunpeng & Bao, Qun & Siao-Yun, Wei & Islam, Misbah ul & Razzaq, Asif, 2022. "Renewable energy transition and environmental sustainability through economic complexity in BRICS countries: Fresh insights from novel Method of Moments Quantile regression," Renewable Energy, Elsevier, vol. 184(C), pages 1165-1176.
    3. Olimpia Neagu & Mircea Constantin Teodoru, 2019. "The Relationship between Economic Complexity, Energy Consumption Structure and Greenhouse Gas Emission: Heterogeneous Panel Evidence from the EU Countries," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    4. Lapatinas, Athanasios & Garas, Antonios & Boleti, Eirini & Kyriakou, Alexandra, 2019. "Economic complexity and environmental performance: Evidence from a world sample," MPRA Paper 92833, University Library of Munich, Germany.
    5. Mohamed Chakroun & Naima Chrid & Sami Saafi, 2021. "Does export upgrading really matter to economic growth? Evidence from panel data for high‐, middle‐ and low‐income countries," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5584-5609, October.
    6. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    7. Naima Chrid & Sami Saafi & Mohamed Chakroun, 2021. "Export Upgrading and Economic Growth: a Panel Cointegration and Causality Analysis," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(2), pages 811-841, June.
    8. Antonios Garas & Sophie Guthmuller & Athanasios Lapatinas, 2021. "The development of nations conditions the disease space," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-35, January.
    9. Saud, Shah & Haseeb, Abdul & Zafar, Muhammad Wasif & Li, Huiyun, 2023. "Articulating natural resource abundance, economic complexity, education and environmental sustainability in MENA countries: Evidence from advanced panel estimation," Resources Policy, Elsevier, vol. 80(C).
    10. Balland, Pierre-Alexandre & Broekel, Tom & Diodato, Dario & Giuliani, Elisa & Hausmann, Ricardo & O'Clery, Neave & Rigby, David, 2022. "Reprint of The new paradigm of economic complexity," Research Policy, Elsevier, vol. 51(8).
    11. Hasanov, Fakhri J. & Bulut, Cihan & Suleymanov, Elchin, 2016. "Do population age groups matter in the energy use of the oil-exporting countries?," Economic Modelling, Elsevier, vol. 54(C), pages 82-99.
    12. Balland, Pierre-Alexandre & Broekel, Tom & Diodato, Dario & Giuliani, Elisa & Hausmann, Ricardo & O'Clery, Neave & Rigby, David, 2022. "The new paradigm of economic complexity," Research Policy, Elsevier, vol. 51(3).
    13. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    14. Olimpia Neagu, 2020. "Economic Complexity and Ecological Footprint: Evidence from the Most Complex Economies in the World," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    15. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    16. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    17. Can, Muhlis & Gozgor, Giray, 2016. "Dynamic Relationships among CO2 Emissions, Energy Consumption, Economic Growth, and Economic Complexity in France," MPRA Paper 70373, University Library of Munich, Germany.
    18. Sun, Huaping & Samuel, Clottey Attuquaye & Kofi Amissah, Joshua Clifford & Taghizadeh-Hesary, Farhad & Mensah, Isaac Adjei, 2020. "Non-linear nexus between CO2 emissions and economic growth: A comparison of OECD and B&R countries," Energy, Elsevier, vol. 212(C).
    19. Rafiq, Shuddhasattwa & Salim, Ruhul & Apergis, Nicholas, 2016. "Agriculture, trade openness and emissions: an empirical analysis and policy options," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 60(2), April.
    20. Gnangnon, Sèna Kimm, 2021. "Do Unilateral Trade Preferences Help Reduce Poverty in Beneficiary Countries?," EconStor Preprints 247346, ZBW - Leibniz Information Centre for Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:29:y:2021:i:1:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.