IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v91y2016icp64-74.html
   My bibliography  Save this article

A study on the future of unconventional oil development under different oil price scenarios: A system dynamics approach

Author

Listed:
  • Hosseini, Seyed Hossein
  • Shakouri G., Hamed

Abstract

Fluctuations in the oil global market has been a critical topic for the world economy so that analyzing and forecasting the conventional oil production rate has been examined by many researchers thoroughly. However, the dynamics of the market has not been studied systematically with regard to the new emerging competitors, namely unconventional oil. In this paper, the future trend of conventional and unconventional oil production and capacity expansion rates are analyzed using system dynamics approach. To do so, a supply-side modeling approach is utilized while main effective loops are modeled mathematically as follows: technological learning and progress, long and short-term profitability of oil capacity expansion and production, and oil proved reserve limitations. The proposed model is used to analyze conventional and unconventional oil production shares, up to 2025, under different oil price scenarios. The results show that conventional oil production rate ranges from 79.995 to 87.044MB/day, which is 75–80 percent of total oil production rate, while unconventional oil production rate ranges from 19.615 to 28.584MB/day. Simulation results reveal that unconventional oil can gain a considerable market share in the short run, although conventional oil will remain as the major source for the market in the long run.

Suggested Citation

  • Hosseini, Seyed Hossein & Shakouri G., Hamed, 2016. "A study on the future of unconventional oil development under different oil price scenarios: A system dynamics approach," Energy Policy, Elsevier, vol. 91(C), pages 64-74.
  • Handle: RePEc:eee:enepol:v:91:y:2016:i:c:p:64-74
    DOI: 10.1016/j.enpol.2015.12.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515302391
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.12.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Méjean, Aurélie & Hope, Chris, 2008. "Modelling the costs of non-conventional oil: A case study of Canadian bitumen," Energy Policy, Elsevier, vol. 36(11), pages 4205-4216, November.
    2. Méjean, Aurélie & Hope, Chris, 2013. "Supplying synthetic crude oil from Canadian oil sands: A comparative study of the costs and CO2 emissions of mining and in-situ recovery," Energy Policy, Elsevier, vol. 60(C), pages 27-40.
    3. Reynolds, Douglas B., 2014. "World oil production trend: Comparing Hubbert multi-cycle curves," Ecological Economics, Elsevier, vol. 98(C), pages 62-71.
    4. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    5. Maggio, G. & Cacciola, G., 2009. "A variant of the Hubbert curve for world oil production forecasts," Energy Policy, Elsevier, vol. 37(11), pages 4761-4770, November.
    6. Silvério, Renan & Szklo, Alexandre, 2012. "The effect of the financial sector on the evolution of oil prices: Analysis of the contribution of the futures market to the price discovery process in the WTI spot market," Energy Economics, Elsevier, vol. 34(6), pages 1799-1808.
    7. Itf, 2008. "Oil Dependence: Is Transport Running out of Affordable Fuel?," OECD/ITF Joint Transport Research Centre Discussion Papers 2008/5, OECD Publishing.
    8. de Castro, Carlos & Miguel, Luis Javier & Mediavilla, Margarita, 2009. "The role of non conventional oil in the attenuation of peak oil," Energy Policy, Elsevier, vol. 37(5), pages 1825-1833, May.
    9. Chi, K.C. & Reiner, D.M. & Nuttall, W.J., 2009. "Dynamics of the UK Natural Gas Industry: System Dynamics Modelling and Long-Term Energy Policy Analysis," Cambridge Working Papers in Economics 0922, Faculty of Economics, University of Cambridge.
    10. Liddle, Brantley, 2012. "Breaks and trends in OECD countries' energy–GDP ratios," Energy Policy, Elsevier, vol. 45(C), pages 502-509.
    11. Henriques, Irene & Sadorsky, Perry, 2008. "Oil prices and the stock prices of alternative energy companies," Energy Economics, Elsevier, vol. 30(3), pages 998-1010, May.
    12. Greene, David L. & Hopson, Janet L. & Li, Jia, 2006. "Have we run out of oil yet? Oil peaking analysis from an optimist's perspective," Energy Policy, Elsevier, vol. 34(5), pages 515-531, March.
    13. Geller, Howard & Harrington, Philip & Rosenfeld, Arthur H. & Tanishima, Satoshi & Unander, Fridtjof, 2006. "Polices for increasing energy efficiency: Thirty years of experience in OECD countries," Energy Policy, Elsevier, vol. 34(5), pages 556-573, March.
    14. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    15. Owen, Nick A. & Inderwildi, Oliver R. & King, David A., 2010. "The status of conventional world oil reserves--Hype or cause for concern?," Energy Policy, Elsevier, vol. 38(8), pages 4743-4749, August.
    16. Mohr, S.H. & Evans, G.M., 2010. "Long term prediction of unconventional oil production," Energy Policy, Elsevier, vol. 38(1), pages 265-276, January.
    17. Nazli Choucri & Christopher Heye & Michael Lynch, 1990. "Analyzing Oil Production in Developing Countries: A Case Study of Egypt," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 91-116.
    18. Salameh, Mamdouh G., 2003. "Can renewable and unconventional energy sources bridge the global energy gap in the 21st century?," Applied Energy, Elsevier, vol. 75(1-2), pages 33-42, May.
    19. Tao, Zaipu & Li, Mingyu, 2007. "System dynamics model of Hubbert Peak for China's oil," Energy Policy, Elsevier, vol. 35(4), pages 2281-2286, April.
    20. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    21. Reynolds, Douglas B. & Kolodziej, Marek, 2008. "Former Soviet Union oil production and GDP decline: Granger causality and the multi-cycle Hubbert curve," Energy Economics, Elsevier, vol. 30(2), pages 271-289, March.
    22. Foster, Andrew J., 1996. "Price discovery in oil markets: a time varying analysis of the 1990-1991 Gulf conflict," Energy Economics, Elsevier, vol. 18(3), pages 231-246, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
    2. Dahl, Roy Endre & Lorentzen, Sindre & Oglend, Atle & Osmundsen, Petter, 2016. "Pro-Cyclical Petroleum Investments and Cost Overruns in Norway by Roy Endré Dahl, Sindre Lorentzen, Atle Oglend, and Petter Osmundsen," UiS Working Papers in Economics and Finance 2016/7, University of Stavanger.
    3. Teti, Emanuele & Dallocchio, Maurizio & De Sanctis, Daniele, 2020. "Effects of oil price fall on the betas in the Unconventional Oil & Gas Industry," Energy Policy, Elsevier, vol. 144(C).
    4. Carpio, Lucio Guido Tapia, 2019. "The effects of oil price volatility on ethanol, gasoline, and sugar price forecasts," Energy, Elsevier, vol. 181(C), pages 1012-1022.
    5. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    6. Hajiebrahimi Farashah, Vahid & Sazvar, Zeinab & Hosseini, Seyed Hossein, 2021. "A dynamic model to formulate effective capacity expansion policies in Iranian petrochemical Industry to complete the value chain," Energy Policy, Elsevier, vol. 148(PB).
    7. Hosseini, Seyed Hossein & Shakouri G., Hamed & Kazemi, Aliyeh, 2021. "Oil price future regarding unconventional oil production and its near-term deployment: A system dynamics approach," Energy, Elsevier, vol. 222(C).
    8. Luo, Zhibo & Ma, Shujie & Hu, Shanying & Chen, Dingjiang, 2017. "Towards the sustainable development of the regional phosphorus resources industry in China: A system dynamics approach," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 186-197.
    9. Hossein Kiani & Seyed Hossein Hosseini & Farshid Abdi, 2018. "A Model to Investigate the Effect of Work Ethic Culture on Dynamics of Rework in Management of Projects," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 16(1), pages 40-59.
    10. Solarin, Sakiru Adebola & Gil-Alana, Luis A. & Lafuente, Carmen, 2020. "An investigation of long range reliance on shale oil and shale gas production in the U.S. market," Energy, Elsevier, vol. 195(C).
    11. Dahl, Roy Endré & Lorentzen, Sindre & Oglend, Atle & Osmundsen, Petter, 2017. "Pro-cyclical petroleum investments and cost overruns in Norway," Energy Policy, Elsevier, vol. 100(C), pages 68-78.
    12. Ansari, Dawud, 2017. "OPEC, Saudi Arabia, and the shale revolution: Insights from equilibrium modelling and oil politics," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 111, pages 166-178.
    13. Wang, Yongli & Zhang, Fuli & Zhang, Yuanyuan & Wang, Xiaohai & Fan, Lisha & Song, Fuhao & Ma, Yuze & Wang, Shuo, 2019. "Chinese power-grid financial capacity based on transmission and distribution tariff policy: A system dynamics approach," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    14. Xiaohua Song & Xubei Zhang & Yun Long & Yiwei Guo, 2017. "Study on the Evolution Mechanism and Development Forecasting of China’s Power Supply Structure Clean Development," Sustainability, MDPI, vol. 9(2), pages 1-22, February.
    15. Auping, Willem L. & Pruyt, Erik & de Jong, Sijbren & Kwakkel, Jan H., 2016. "The geopolitical impact of the shale revolution: Exploring consequences on energy prices and rentier states," Energy Policy, Elsevier, vol. 98(C), pages 390-399.
    16. Pan, Lingying & Liu, Pei & Li, Zheng, 2017. "A system dynamic analysis of China’s oil supply chain: Over-capacity and energy security issues," Applied Energy, Elsevier, vol. 188(C), pages 508-520.
    17. Daniel Inman & Brian Bush & Emily Newes & Corey Peck & Steven Peterson, 2020. "A technique for generating supply and demand curves from system dynamics models," System Dynamics Review, System Dynamics Society, vol. 36(3), pages 373-384, July.
    18. Mohsin, M. & Zhou, P. & Iqbal, N. & Shah, S.A.A., 2018. "Assessing oil supply security of South Asia," Energy, Elsevier, vol. 155(C), pages 438-447.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chavez-Rodriguez, Mauro F. & Szklo, Alexandre & de Lucena, Andre Frossard Pereira, 2015. "Analysis of past and future oil production in Peru under a Hubbert approach," Energy Policy, Elsevier, vol. 77(C), pages 140-151.
    2. Méjean, Aurélie & Hope, Chris, 2013. "Supplying synthetic crude oil from Canadian oil sands: A comparative study of the costs and CO2 emissions of mining and in-situ recovery," Energy Policy, Elsevier, vol. 60(C), pages 27-40.
    3. Sena, Marcelo Fonseca Monteiro de & Rosa, Luiz Pinguelli & Szklo, Alexandre, 2013. "Will Venezuelan extra-heavy oil be a significant source of petroleum in the next decades?," Energy Policy, Elsevier, vol. 61(C), pages 51-59.
    4. Yang, Guangfei & Li, Xianneng & Wang, Jianliang & Lian, Lian & Ma, Tieju, 2015. "Modeling oil production based on symbolic regression," Energy Policy, Elsevier, vol. 82(C), pages 48-61.
    5. Harris, Tyler M. & Devkota, Jay P. & Khanna, Vikas & Eranki, Pragnya L. & Landis, Amy E., 2018. "Logistic growth curve modeling of US energy production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 46-57.
    6. Aurélie Méjean & Chris Hope, 2010. "The Effect of CO2 Pricing on Conventional and Non-Conventional Oil Supply and Demand," Working Papers EPRG 1029, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    7. Patrick Criqui & Silvana Mima, 2012. "European climate -- energy security nexus: A model based scenario analysis," Post-Print halshs-00661043, HAL.
    8. Abdulla Kaya & Denes Csala & Sgouris Sgouridis, 2017. "Constant elasticity of substitution functions for energy modeling in general equilibrium integrated assessment models: a critical review and recommendations," Climatic Change, Springer, vol. 145(1), pages 27-40, November.
    9. Lättilä, Lauri & Henttu, Ville & Hilmola, Olli-Pekka, 2013. "Hinterland operations of sea ports do matter: Dry port usage effects on transportation costs and CO2 emissions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 55(C), pages 23-42.
    10. Logar, Ivana & van den Bergh, Jeroen C.J.M., 2013. "The impact of peak oil on tourism in Spain: An input–output analysis of price, demand and economy-wide effects," Energy, Elsevier, vol. 54(C), pages 155-166.
    11. Haugom, Erik & Mydland, Ørjan & Pichler, Alois, 2016. "Long term oil prices," Energy Economics, Elsevier, vol. 58(C), pages 84-94.
    12. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Geraili, A. & Sharma, P. & Romagnoli, J.A., 2014. "Technology analysis of integrated biorefineries through process simulation and hybrid optimization," Energy, Elsevier, vol. 73(C), pages 145-159.
    14. Chi Yong & Mu Tong & Zhongyi Yang & Jixian Zhou, 2023. "Conventional Natural Gas Project Investment and Decision Making under Multiple Uncertainties," Energies, MDPI, vol. 16(5), pages 1-30, February.
    15. Fusco, Francesco & Nolan, Gary & Ringwood, John V., 2010. "Variability reduction through optimal combination of wind/wave resources – An Irish case study," Energy, Elsevier, vol. 35(1), pages 314-325.
    16. Wang, Jianliang & Feng, Lianyong & Steve, Mohr & Tang, Xu & Gail, Tverberg E. & Mikael, Höök, 2015. "China's unconventional oil: A review of its resources and outlook for long-term production," Energy, Elsevier, vol. 82(C), pages 31-42.
    17. Vinagre Díaz, Juan José & Wilby, Mark Richard & Rodríguez González, Ana Belén, 2015. "The wasted energy: A metric to set up appropriate targets in our path towards fully renewable energy systems," Energy, Elsevier, vol. 90(P1), pages 900-909.
    18. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.
    19. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    20. Wang, Ke & Feng, Lianyong & Wang, Jianliang & Xiong, Yi & Tverberg, Gail E., 2016. "An oil production forecast for China considering economic limits," Energy, Elsevier, vol. 113(C), pages 586-596.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:91:y:2016:i:c:p:64-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.